
Deep Learning of Partial Graph Matching via Differentiable Top-K

Runzhong Wang†, Ziao Guo†, Shaofei Jiang, Xiaokang Yang, Junchi Yan∗

MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University
{runzhong.wang,ziao.guo,jiangshaofei,xkyang,yanjunchi}@sjtu.edu.cn

Abstract

Graph matching (GM) aims at discovering node match-
ing between graphs, by maximizing the node- and edge-
wise affinities between the matched elements. As an NP-
hard problem, its challenge is further pronounced in the
existence of outlier nodes in both graphs which is ubiqui-
tous in practice, especially for vision problems. However,
popular affinity-maximization-based paradigms often lack
a principled scheme to suppress the false matching and
resort to handcrafted thresholding to dismiss the outliers.
This limitation is also inherited by the neural GM solvers
though they have shown superior performance in the ideal
no-outlier setting. In this paper, we propose to formulate
the partial GM problem as the top-k selection task with a
given/estimated number of inliers k. Specifically, we devise
a differentiable top-k module that enables effective gradi-
ent descent over the optimal-transport layer, which can be
readily plugged into SOTA deep GM pipelines including the
quadratic matching network NGMv2 as well as the linear
matching network GCAN. Meanwhile, the attention-fused
aggregation layers are developed to estimate k to enable
automatic outlier-robust matching in the wild. Last but
not least, we remake and release a new benchmark called
IMC-PT-SparseGM, originating from the IMC-PT stereo-
matching dataset. The new benchmark involves more scale-
varying graphs and partial matching instances from the
real world. Experiments show that our methods outperform
other partial matching schemes on popular benchmarks.

1. Introduction
The importance of graph matching (GM) is recognized

by its successful applications in machine learning [26],
molecule matching [47], and various vision tasks [15, 30,

∗Runzhong Wang and Ziao Guo contributed equally. Junchi Yan is
the correspondence author who is also with Shanghai AI Laboratory. The
work was in part supported by National Key Research and Development
Program of China (2020AAA0107600), NSFC (62222607, U19B2035),
Shanghai Committee Science and Technology Project (22511105100).
IMC-PT-SparseGM dataset: https://github.com/Thinklab-
SJTU/IMCPT-SparseGM-dataset; Code: https://github.
com/Thinklab-SJTU/ThinkMatch.

Figure 1. Illustrative comparison of injective graph matching
(left) and partial graph matching (right) on our remade and re-
leased benchmark: IMC-PT-SparseGM (originated from IMC-
PT [18], see Sec. 4 for details). Green for correct matches, red for
wrong matches. Without partial matching, the GM solver greed-
ily matches all nodes, leading to inferior accuracy. This paper
presents a general learning method to mitigate this issue.

49]. Existing GM methods mainly follow the optimiza-
tion formulation by maximizing the node-wise and edge-
wise affinities of the matched elements, yielding an NP-hard
problem known as Quadratic Assignment Problem [22].

The ubiquitous challenge of partial matching, how-
ever, is less addressed by the existing affinity-maximization
pipeline. Partial matching means only a partial set of the
nodes are matched, due to the existence of outliers on both
sides. As shown in Fig. 1, this is commonly encountered
in (visual) graph matching [13, 16, 52, 53], where the exis-
tence of outliers is usually unavoidable due to the errors in
keypoint detectors and (self-)occlusion of objects.

The recent line of deep graph matching papers [11, 45,
52] sheds light on the partial GM, whereby the higher ca-
pacity offered by deep neural networks on both the feature
stage [52] and the solver stage [27, 45] will hopefully dis-
tinguish the outliers from inliers. However, there still lacks
a general, principled approach that could enable the par-
tial matching capability of existing graph matching neural
networks. Some straightforward treatments such as thresh-
olding [30], and adding dummy rows and columns [17] are
relatively inflexible because their threshold and dummy val-
ues are manually assigned.

We aim at developing a general, unified partial match-
ing handling approach, which can be readily integrated into
SOTA GM networks. However, it is still an open ques-
tion about how to determine whether or not a matching
pair should be discarded. Besides, directly discarding the
unwanted matching pairs causes non-differentiability and

https://github.com/Thinklab-SJTU/IMCPT-SparseGM-dataset
https://github.com/Thinklab-SJTU/IMCPT-SparseGM-dataset
https://github.com/Thinklab-SJTU/ThinkMatch
https://github.com/Thinklab-SJTU/ThinkMatch

Sec. 3.2.2

Sec. 3.2.1

GM NetworkCNN

Attention-fused Aggregation with Individual Graph Modeling

AFA-I Module

AFA-U Module

Attention-fused Aggregation with Unified Bipartite Graph Modeling

Top- -GM Algorithm Sec. 3.1

image pairs

doubly-stochastic matrix

graph with featuresfeature extractor graph matching network matching result

AFA-U

AFA-I

refined matching matrix

Our Proposed Modules

flatten

differentiable SOFT-Top

reshape

Figure 2. Deep learning paradigm for partial graph matching. The input images are sent to CNN to extract features and build the input
graphs. The GM network predicts a doubly-stochastic matrix based on graphs with features, followed by a differentiable top-k algorithm.
The number of inliers k is estimated by our proposed attention-fused aggregation networks.

truncated gradient. We resort to the doubly-stochastic ma-
trix available in most SOTA GM pipelines [17, 44, 45],
whereby the values in the doubly-stochastic matrix could be
viewed as the matching confidence. The matchings with the
top-k confidence values should be preserved, assuming that
the number of inliers k is known. To this end, we present a
top-k deep graph matching approach to address the partial
matching challenge, whereby the differentiable top-k for-
mulation [48] is followed to enable the end-to-end training.

Another challenge that naturally arises is how to estimate
the value of k (i.e. number of inliers) from scratch. We
identify the connection between the k-estimation problem
and the graph-level similarity learning problem, whereby
some prior successful models [1, 2] could be further ex-
ploited. In this paper, we present two networks to ef-
ficiently reuse the mid-layers that are available in most
deep GM pipelines, namely Attention-Fused Aggregation
(AFA) modules, based on the similarity of graphs aggre-
gated from either individual graph features (Sec. 3.2.1)
or the doubly-stochastic similarities on a unified bipartite
graph (Sec. 3.2.2). The AFA modules are further integrated
into the learning pipeline.

Besides, the severe partial matching issue that usually
exists in downstream vision tasks is less addressed by exist-
ing graph matching evaluation protocols. We are thus moti-
vated to collect and relabel a new benchmark, namely IMC-
PT-SparseGM, which is originated from the stereo matching
task in Image Matching Challenge PhotoTourism (IMC-PT)
2020 [18]. As summarized in Tbl. 1, the new benchmark ad-
dresses the severe partial matching challenge, and its graphs
are of larger sizes than existing benchmarks.

The main contributions of the paper are as follows.
1) We formulate the partial (graph) matching problem

as a top-k scheme, i.e. in the presence of outliers in both

Table 1. Visual GM datasets. “partial rate” means the mean per-
centage of occluded keypoints w.r.t. the universe of all keypoints.

dataset name # visual graphs avg # nodes # universe partial rate
Willow Object Class [6] 404 10 10 0.0%

Pascal VOC Keypoint [5] 8702 9.07 6 to 23 28.5%
IMC-PT-SparseGM-50 (ours) 25765 21.36 50 57.3%

IMC-PT-SparseGM-100 (ours) 25765 44.48 100 55.5%

graphs. The scheme can be integrated into SOTA GM neu-
ral networks e.g. [17, 45] as a plugin.

2) Based on the top-k formulation, we devise an end-to-
end and outlier-aware neural pipeline for partial GM learn-
ing and show its effectiveness. In contrast, we show that di-
rectly combining the top-k scheme with either a traditional
solver like RRWM [7] or an outlier-blind neural solver
e.g. NGMv2 [45] still produce poor results (see Tbl. 6), sug-
gesting the necessity of our integrated learning paradigm.

3) To estimate the number of inliers k which is often un-
known in practice, we devise an attention-based supervised
graph neural network whose input consists of similarity in-
formation available in GM networks. With this estimation
module, we enable a fully automatic neural solver for partial
GM which to our best knowledge is new in the literature.

4) Our approach outperforms existing methods on pop-
ular GM benchmarks notably in the setting of partial GM.
Last but not least, we remake and release a new benchmark
to advance the research in GM by introducing larger graphs
for matching and more partial matching instances.

2. Related Work
Deep learning of graph matching. The graph matching

problem used to be formulated in its optimization form [22],
whereby traditional algorithms are developed to tackle the
matching problem [14, 23, 24]. The recent efforts on deep
learning models for graph matching [27,44,51–53] are mo-
tivated by the higher model capacity offered by deep learn-

ing, in consideration of the robustness against noises and
outliers. Existing deep graph matching models could be
categorized into two main paradigms: 1) The quadratic
matching paradigm [28, 29, 52] where both node and edge
affinities are explicitly modulated, and the SOTA method is
NGMv2 [45]; and 2) The linear matching paradigm [13,44,
51, 53] where edge information is embedded into node fea-
tures, resulting in a linear matching problem, and the SOTA
method is GCAN [17]. It might be too early to judge which
paradigm is better, but as their common challenge, the im-
portant partial matching setting is merely studied. These
previous deep graph matching networks are viewed orthog-
onal to our approach, where we aim to develop a princi-
pled partial matching handling method that fits into most
deep graph matching models. There also exist traditional
solvers [8, 43] and learning model [28] tailored for partial
graph matching, yet their architectures lack the flexibility
to directly fuse with SOTA deep learning models, and their
performances are inferior in experiments.

Partial matching handling. There exist methods to
handle the challenges of partial matching and outliers, by
exploiting additional priors. There is success in discovering
common inliers among multiple graphs, which is addressed
by a few multi-graph matching papers [4, 37, 40]. Maxi-
mum common subgraph (MCS) solvers [3,50] rely on strict
graph isomorphism to discard outliers, yet such isomor-
phism is not preserved in visual graph matching because of
the geometric deformations in images. Another line of pa-
pers [12, 39] exploits transformation priors such as motion,
homography, pose, etc. In this paper, however, we intend
to relax the previous restrictions on priors and handle the
general cases of partial matching in a data-driven manner.

3. Proposed Method
An overview of our deep learning of partial graph match-

ing pipeline is shown in Fig. 2. In Sec. 3.1, we present a
principled top-k graph matching approach that works with
general doubly-stochastic matrices and supports gradient
backpropagation, to discard outliers. In Sec. 3.2.1 and 3.2.2,
we present attention-fused aggregation models with individ-
ual graphs and a unified graph, respectively, to estimate the
number of inliers k in a data-driven manner.

3.1. Top-k-based Deep Partial Graph Matching
To encode partial matching constraint into deep graph

matching pipeline, inspired by [48], we formulate choos-
ing the top-k matches as an Optimal Transport (OT) prob-
lem, whereby all elements in the doubly-stochastic matrix
are treated as matching confidences, and the k most confi-
dent matches are preserved. The procedure of our top-k-
GM algorithm is summarized in Algorithm 1.

OT formulation of top-k. As shown in Fig. 2, we flatten
the doubly-stochastic matrix S into its vectorized version

Algorithm 1 Top-k-based Deep Learning of Partial GM

Input: matching confidence d; k; regularization factor ε.
1: construct D, c, r by Eq. 1; Γ = exp (−D/ε);
2: repeat . Sinkhorn optimal transport
3: Γ = diag((Γ1� r))

−1
Γ; . row norm

4: Γ = diag
(
(Γ>1� c)

)−1
Γ; . column norm

5: until Γ is converged
6: Sr = Reshape(Γ:,2); . rebuild matching matrix
7: if training then
8: return Sr; . differentiable result, for training
9: else

10: return GreedyTopK(Hungarian(Sr)); . for testing
11: end if

d = [d1, d2, . . . , dn1n2
]. To select the top-k matches from

d in a differentiable manner, the OT problem is formulated
as moving each element in d to one of the two destinations:
dmax and dmin. The capacities of dmax and dmin are k and
n1n2 − k respectively, so that the matches moved to dmax

are selected, and the others moved to dmin are discarded.
Denote r, c as the marginal distributions, D as the distance
matrix, 1 as an all-one vector, we have

r = 1>n1n2
, c = [n1n2 − k, k]>, (1)

D =

[
d1 − dmin d2 − dmin · · · dn1n2

− dmin

dmax − d1 dmax − d2 · · · dmax − dn1n2

]
.

The OT problem is formulated as

min
Γ

tr(Γ>D) s.t. Γ1 = r,Γ>1 = c, (2)

where Γ ∈ {0, 1}n1n2×2 is the transportation matrix,
Γi,1 = 0,Γi,2 = 1 means the i-th match is selected,
Γi,1 = 1,Γi,2 = 0 means the i-th match is discarded.

Solving OT differentiably. Directly solving Eq. 2 does
not offer a meaningful gradient for neural networks. To
build an end-to-end learning pipeline, we modify the ob-
jective function by adding an entropic regularizer [9], and
relax the constraints to continuous values Γ ∈ [0, 1]n1n2×2:

min
Γ

tr(Γ>D) + εh (Γ) s.t. Γ1 = r,Γ>1 = c (3)

where h (Γ) =
∑

i,j Γi,j logΓi,j . We then adopt the dif-
ferentiable top-k algorithm [48] based on Sinkhorn algo-
rithm [34]. Γ is firstly initialized via Γ = exp (−D/ε),
where ε is the regularization factor. The solving procedure
is composed of alternative row/column-normalization on Γ:

Γ = diag (Γ1� r)
−1

Γ, Γ = diag
(
Γ>1� c

)−1
Γ, (4)

where�means element-wise division, diag(·) means build-
ing a diagonal matrix from a vector. The 2nd row of con-
verged Γ, denoted as Γ:,2, are the probabilities that each
match should be selected in top-k, and we have

∑
Γ:,2 = k.

 Attentional Feature
Aggregation Layer Attention Pooling Neural Tensor Network

+

+

mean of node features

average attention weight

M
LP

Sigm
oid & Scale up

input graph

Figure 3. AFA-I module for the number of inliers k prediction with
Attention-Fused Aggregation and Individual graph modeling.

Rebuilding matching matrix. We reshape Γ:,2 into
n1 × n2, which is viewed as the refined matching ma-
trix Sr. Sr is used for loss computation during training,
whereby standard loss functions e.g. permutation loss [44]
work smoothly. Note that we do not guarantee the 1-on-1
matching constraint among the selected k matches. There-
fore, for testing, we perform Hungarian algorithm [19] on
Sr, and greedily select matches with top-k based on the
confidence from the refined matching matrix. GreedyTopK
in Algorithm 1 is elaborated in Appendix.

3.2. Attention-Fused Aggregation for k Prediction
Attention-Fused Aggregation (AFA) modules are our

principled approach to predicting the number of inliers k.
In this paper, we are motivated by the previous success of
graph-level similarity learning models [1, 2, 25], whereby
estimating k could be viewed as an extension of graph sim-
ilarity learning, and higher similarity implies larger k. In
this section, we present graph neural network-style aggre-
gations to exploit the similarity information available at dif-
ferent stages of the GM pipeline, on either individual graphs
(AFA-I, Sec. 3.2.1) or a unified graph (AFA-U, Sec. 3.2.2).

3.2.1 AFA-I: Individual Graph Modeling

Previous efforts [1, 25] demonstrate the feasibility of graph
similarity learning from individual graphs, whereby its gen-
eral motivation could be adapted to k prediction. In our
AFA-I approach, we aggregate global features in each in-
dividual graph, and then compute global similarity score
based on their global features. An overview of the AFA-
I module is shown in Fig. 3. As shown in Fig. 2, AFA-I
shares the CNN feature extractor with the GM network, and
the graphs with features are inputs to AFA-I.

Attentional Feature Aggregation Layer. In this layer,
we try to aggregate the features of nodes exploiting graph
structure. Inspired by [25, 44], we adopt intra-graph ag-
gregation layers and cross-graph attention layers. Con-
sider G1 = (V1, E1) and G2 = (V2, E2), with |V1| = n1,
|V2| = n2, the intra-graph aggregation updates the feature
of node i through:

xl+1
i = ξintr

 1

|N (i)|
∑

j∈N (i)

(
φintr

(
xl
j

))
, ζintr

(
xl
i

) ,

(5)
where xl

i is the the feature vector of node i in layer l, N (i)
is the set of neighbors of node i. ξ, φ, ζ refer to the update
function, message passing function, and self-update func-
tion, respectively, and can be implemented as any differ-
entiable function that maps vectors to vectors. The cross-
graph aggregation adopts an attention mechanism [41], and
aggregate node features from the other graph, weighted by
the similarity of features (suppose i ∈ V1):

xl+1
i = ξcrs

∑
j∈V2

(
M̃l

i,jφcrs
(
xl
j

))
, ζcrs

(
xl
i

) , (6)

where M̃l ∈ [0, 1]n1×n2 is the similarity matrix among
nodes from the graph pair in layer l, and M̃i,j is at row
i, column j. The building of M̃ follows [44]:

Al
i,j = exp

(
xl
i
>

Waftyx
l
j

τ

)
, i ∈ V1, j ∈ V2,

M̃l = Sinkhorn(Al),

(7)

where A ∈ R+n1×n2 is the affinity matrix, representing
the similarity of node features from the graph pair. Ai,j

indicates the affinity score between node i ∈ V1 and node
j ∈ V2. Wafty ∈ Rp×p contains learnable parameters used
for affinity matrix construction, where p is the feature di-
mension. τ is a hyperparameter for scaling. M̃ is generated
by taking Sinkhorn operation [34] on affinity matrix and is
guaranteed to be a doubly-stochastic matrix, which avoids
numerical scale issues of cross-graph attention. Note that
the Sinkhorn method here is for node-matching (see [44]),
whose formulation is different from the one tackling the
top-k OT problem in Sec. 3.1.

Attention Pooling. After feature aggregation, we obtain
the node features of each graph via stacking node feature
vectors. The node features are denoted as X1 ∈ Rn1×p,
X2 ∈ Rn2×p for G1,G2, respectively, where p is the feature
dimension. We first perform average pooling to reach x̄1 ∈
Rp, x̄2 ∈ Rp (column vectors). The global features are
designed to be a weighted summation of node features with
attention weights:

wi = Sigmoid (XiWap,ix̄i) , xglb,i =

ni∑
n=1

wi,nxi,n, (8)

where Wap,i ∈ Rp×p contains learnable parameters for Gi.
wi ∈ Rni is the attention weight of Gi. wi,n ∈ R is the
n-th element of wi, and xi,n ∈ Rp is the n-th vector of Xi.
xglb,i is the global feature of Gi.

Neural Tensor Network. The similarity between the
global graph-level features is measured through a neural
tensor network with multi-neurons [35]. For each neuron,
the similarity score s is computed by:

input bipartite graph

M
ulti-H

ead
C

ross-Set
Attention

Concat

Graph Attention Layer

Feed Forw
ard

Add & N
orm

M
LP

M
axpooling

Sigm
oid & Scale up

Figure 4. AFA-U module for k prediction with Attention-Fused
Aggregation and Unified bipartite graph modeling.

s = x>glb,1Wntn,1xglb,2 + Wntn,2

[
xglb,1
xglb,2

]
+ bntn, (9)

where [·] denotes concatenation operation, and Wntn,1,
Wntn,2, bntn are learnable parameters. The adopted multi-
neuron architecture enables the model to focus on different
information in different subspaces. Finally, we merge the
similarity scores from all neurons via a 2-layer MLP with
a final Sigmoid activation to generate k-proportion, and we
multiply the k-proportion with min(n1, n2) to scale up and
generate the final k by rounding.

3.2.2 AFA-U: Unified Bipartite Graph Modeling

The unified bipartite graph built from the doubly-stochastic
matrix S also carries graph similarity information, and
such information is explored previously in [2] by CNN. An
overview of AFA-U is shown in Fig. 4, whereby the doubly-
stochastic output of the GM network is exploited for k pre-
diction. Note that Si,j is the match confidence at row i, col-
umn j, also reflecting the similarity between node i in G1
and node j in G2, and S contains abundant local similarity
information. Inspired by [21], we modulate S as a bipar-
tite graph with weighted edges, whereby the node sets are
V1 = {a1, a2, . . . , an1

} and V2 = {b1, b2, . . . , bn2
}. The

edge weight between ai ∈ V1 and bj ∈ V2 is Si,j .
Graph Attention Layer. We aggregate the features on

the bipartite graph via a graph attention layer [42], to ag-
gregate similarity information (i.e. edge weights) into node
embeddings. The architecture of the graph attention layer
is mainly built upon transformers [41]. Similar to the
multi-head attention module in transformers, the multi-head
cross-set attention module maps a query and a set of key-
value pairs to an output. We take the embeddings of nodes
in V1 as the input query Q ∈ Rn1×pqkv , and the embeddings
of nodes in V2 as both the key K ∈ Rn2×pqkv and the value
V ∈ Rn2×pqkv in the input key-value pair. pqkv is the di-
mension of each query, key, and value vector. In each head
of the multi-head cross-set attention, the original attention
weights wori (size n1×n2) are first computed by Q and K:

wori =

(
QWQ

) (
KWK

)>
√
pqkv

(10)

where WQ and WK are learnable parameters and inde-
pendent in each head. The output is correspondingly the
weighted summation of embeddings of nodes in V2. Fol-
lowing [21], the edge weight matrix S (in the bipartite
graph) is concatenated to wori at a new dimension, then the
new dimension is merged through a 2-layer MLP with 2-
dim input and 1-dim output to generate the final attention
weights wfinal (size n1 × n2):

wfinal = softmax
(

MLP
([

wori
S

]))
(11)

wfinal is multiplied with the embedded V to produce the out-
put in each head: Attn (Q,K,V) = wfinal(VWV). WV

is learnable and independent in each head. Outputs from all
heads are merged via concatenation and linear transforma-
tion. Then an add & norm and a feed forward module from
transformers [41] aggregate the final node embeddings.

Maxpooling and final MLP. The aggregated node em-
beddings are then max-pooled to retain only the most signif-
icant features, and a 2-layer MLP with Sigmoid activation
is adopted to generate the final k-proportion. k is finally
generated via scaling up, in the way same as Sec. 3.2.1.

Note that the information is mainly from S, the initial-
ization of node embeddings does not have a significant im-
pact. In our implementation, following [21], we set node
embeddings in V1 to be zero vectors, and in V2 to be one-
hot vectors to enhance the effect of S in feature aggregation.
Moreover, the positions of V1 and V2 can be swapped in our
AFA-U module to produce a new k for double-checking.
We build 2 parallel AFA-U modules for V1 and V2 respec-
tively and take the mean of the 2 output ks as the final k.

3.2.3 Training the AFA Modules
In supervised training, the ground truth of k is available by
counting the number of ground truth matches. Both AFA-I
and AFA-U are trained with a Mean Square Error (MSE)
loss, following standard regression learning pipelines.

3.3. Implementation Details
Network details and training setups. We select

VGG16 [33] as the CNN feature extractor of GM networks
following past methods [17, 29, 44, 45]. To avoid the error
introduced by AFA modules and keep the training stable,
we take the ground truth kgt as the input of Algorithm 1
when training the GM network. The predicted kpred is used
during testing. The AFA modules are dependent on the per-
formance of the GM network and CNN feature extractor, so
we extend the original GM network training pipeline into
three stages. In stage 1, we only train the CNN and GM
network to improve their performance and generate better
inputs for AFA modules. In stage 2, we only train the AFA
modules for a small number of epochs as a warm-up. In

Table 2. F1 (%) on Pascal VOC Keypoints (unfiltered). PMH means Partial Matching Handling. Our methods are marked as gray.
GM Network PMH aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

ZACR [43] ZACR [43] 12.2 31.8 31.7 23.0 35.0 28.3 21.8 32.6 19.6 23.8 33.8 29.9 28.8 21.4 10.8 39.0 26.9 15.5 55.8 82.5 30.2
PCA-GM [44] None 35.6 60.3 43.7 34.5 81.5 54.9 30.1 47.8 30.4 46.4 43.9 44.5 46.1 52.4 29.4 78.7 40.7 30.4 58.6 81.2 48.6

BBGM [29] LPMP [38] 42.2 66.7 54.9 46.1 85.7 66.5 39.8 60.3 38.9 65.1 60.1 58.4 58.1 62.4 41.3 96.1 53.5 26.3 75.9 82.6 59.0

NGMv2 [45]

None 45.5 65.3 55.3 45.8 88.4 64.3 45.9 58.6 43.3 59.1 39.2 55.7 58.0 65.3 44.4 95.4 50.3 41.2 72.4 81.8 58.8
Thresholding 48.3 65.4 55.3 48.6 87.6 63.0 51.1 61.1 39.6 63.3 33.6 59.2 59.3 63.4 46.9 95.2 53.5 45.5 73.4 81.4 59.4±0.4
Dummy node 44.7 61.9 57.1 41.9 83.9 63.9 54.1 60.8 40.5 64.2 36.2 60.6 60.8 61.9 48.7 91.2 56.2 37.4 63.2 82.2 58.6±0.5

AFAT-U (ours) 45.7 67.7 57.3 44.9 90.1 65.5 49.9 59.3 44.0 62.0 54.9 58.4 58.6 63.8 45.9 94.8 50.9 37.3 74.2 82.8 60.2±0.4
AFAT-I (ours) 45.0 67.3 55.9 45.6 90.3 64.6 48.7 58.0 44.7 60.2 54.8 57.2 57.5 63.4 45.2 95.3 49.3 41.6 73.6 82.4 59.9±0.3

GCAN [17]
Dummy node 46.3 67.7 57.4 45.0 87.1 64.8 57.5 61.2 40.8 61.6 37.3 59.9 59.2 64.6 49.7 95.1 54.5 28.5 77.9 83.1 59.7±0.3

AFAT-U (ours) 47.1 70.8 58.1 45.8 90.8 66.5 49.6 58.8 50.6 64.6 47.2 60.5 62.3 65.7 46.3 95.4 52.7 47.4 74.2 83.8 62.0±0.2
AFAT-I (ours) 46.1 69.9 56.1 46.6 90.7 66.1 48.1 57.9 49.9 63.9 50.4 59.0 61.6 65.0 44.7 95.5 50.9 49.2 74.0 83.8 61.6±0.3

Table 3. The GPU memory cost (GB) of matching two graphs
(batch size=1) w.r.t. dense and sparse NGMv2. The original dense
version exceeds memory limit of RTX 3090 (24GB) at 110 nodes,
whereas our sparse version scales-up more efficiently.

Number of Nodes 40 50 60 70 80 90 100 110

Dense NGMv2 [45] 2.82 3.05 4.42 6.26 8.80 12.48 17.59 26.06
Sparse NGMv2 (ours) 2.73 2.73 2.74 2.75 2.75 2.76 2.77 2.78

stage 3, we jointly train the GM network and AFA modules
to make the models fit each other.

Sparse implementation of NGMv2 [45]. We also no-
tice that the demand on GPU memory grows significantly
for quadratic assignment-based GM networks as the num-
ber of nodes increases. Therefore, we implement a sparse
version of SOTA quadratic GM network NGMv2 [45]. In
Tbl. 3, we show that the scalability issue is well-addressed
by our sparse version in terms of the GPU memory cost.

4. Our IMC-PT-SparseGM benchmark
We provide a new visual graph matching benchmark

addressing partial matching and graphs with larger sizes,
based on the novel stereo benchmark Image Matching Chal-
lenge PhotoTourism (IMC-PT) 2020 [18]. In Sec. 4.1
we discuss the original IMC-PT benchmark, and Sec. 4.2
presents how to transform the original stereo benchmark to
GM. Sec. 4.3 provides statistics for our new benchmark.

4.1. Introducing The Original IMC-PT Benchmark
The original IMC-PT 2020 [18] contains photos of 16

tourism attractions around the world collected from Yahoo
Flickr (https://www.flickr.com/). Based on the
large collection of tourism photos, the authors of [18] recon-
struct dense 3D point clouds and camera poses as ground
truth labels with off-the-shelf Structure from Motion (SfM)
software colmap [31, 32]. The IMC-PT is proposed based
on a similar insight as ours: traditional local features are
often evaluated on small datasets through proxy metrics,
which sometimes may not translate into downstream appli-
cations, distorting the actual performance and impeding the
development of new technologies. Therefore, training and
evaluating new image matching strategies on large-scale
and challenging benchmarks are in great need. To this end,
the authors of [18] hold an open challenge in image match-
ing with a new dataset, called Image Matching Challenge

PhotoTourism (IMC-PT) 2020. Based on IMC-PT, we re-
make and release our IMC-PT-SparseGM benchmark for vi-
sual graph matching.

4.2. Building IMC-PT-SparseGM benchmark
We emphasize that the visual GM task, which is the

main focus of this paper and the new benchmark, is no-
tably different from general image matching which often
refers to dense matching without explicit graph structure
e.g. [30, 36]. Visual GM models are usually evaluated
on matching sparse semantic keypoints, which emphasizes
more on exploiting graph structures. Here we set out be-
low our steps to transform the image matching benchmark
(IMC-PT) to visual GM.

Building 3D point clouds. The IMC-PT provides dense
point coordinates detected by colmap [31, 32] for each im-
age, together with a camera pose matrix for 2D-3D projec-
tion. However, these labels are not ready to build a graph
matching benchmark. Our first step is building a dense 3D
point cloud based on the 2D points and camera poses.

Selecting anchors. To build consistent correspondence
for a GM benchmark, our next step is selecting a batch of
anchors. Anchors are randomly selected from the 3D point
clouds, and the selected anchors must satisfy the following
requirements: 1) an anchor must have keypoints from at
least 10 different images within its 0.015δ pixels neighbor-
hood, where δ denotes the diameter of the point cloud. This
prevents selecting rare anchor points that seldom appear in
the collection (e.g. a random person passing by). 2) we set a
minimal Euclidean distance (0.02δ pixels) between any two
anchors to ensure that the anchors are evenly distributed in
the scene. To offer a practical scale-up w.r.t. existing bench-
marks, as shown in Tbl. 1, we set 50 and 100 anchors when
building the new benchmark.

Judging the visibility of anchors in 2D images. Our
IMC-PT-SparseGM benchmark addresses the challenge of
partial matching, i.e. not all anchors appear in an image due
to different camera pose, zoom-in, self-occlusion, etc. After
selecting the anchors, we determine the visibility of anchors
in each image by checking the minimal Euclidean distance
between an anchor and the nearest visible point in the im-
age. If the distance is below the threshold of 0.015δ pixels,
it is marked as a visible anchor.

Projecting to 2D Image. Finally, as the anchors are with

https://www.flickr.com/

Table 4. F1 (%) on Willow Object Class (+random outliers) and IMC-PT-SparseGM (50/100 anchors). Our methods are marked as gray.
Dataset name Willow Object Class IMC-PT-SparseGM (50 anchors) IMC-PT-SparseGM (100 anchors)

GM Network PMH car duck face mbike bottle mean reichstag sacre coeur st peters square mean reichstag sacre coeur st peters square mean

ZACR [43] ZACR [43] 47.3 44.7 77.7 39.9 53.6 52.6 72.1 33.7 29.5 45.1 39.4 33.1 30.4 34.3
PCA-GM [44] None 55.8 56.5 81.2 46.4 58.1 59.6 83.4 47.5 58.5 63.1 70.7 43.1 58.8 57.5

BBGM [29] LPMP [38] 65.1 60.7 85.5 71.6 65.5 69.7 85.4 55.1 59.3 66.6 88.1 55.0 56.4 66.5

NGMv2 [45]

None 78.9 66.6 84.3 63.1 76.0 73.8 90.8 55.9 64.3 70.3 78.4 54.9 69.3 67.6
Thresholding 86.8 74.5 91.2 71.0 83.8 81.4±0.2 91.4 56.8 65.8 71.3±0.3 80.3 56.9 71.6 69.6±0.3
Dummy node 83.3 69.7 95.7 68.8 86.7 80.8±0.4 88.5 56.1 63.0 69.2±0.5 80.0 57.0 71.3 69.5±0.3
AFAT-U(ours) 82.6 74.5 90.6 73.9 87.0 81.7±0.5 90.5 58.7 66.9 72.0±0.3 81.7 57.0 72.2 70.3±0.2
AFAT-I(ours) 84.6 75.7 92.0 74.5 88.6 83.1±0.2 92.3 58.7 66.7 72.8±0.4 82.0 57.0 71.4 70.1±0.3

GCAN [17]
Dummy node 74.8 75.7 92.8 77.1 83.5 80.8±0.2 87.2 55.1 63.0 68.4±0.5 80.4 55.7 72.8 69.6±0.4
AFAT-U(ours) 80.1 78.0 90.6 76.0 87.0 82.3±0.3 86.9 59.4 67.1 71.1±0.4 82.6 58.2 73.8 71.5±0.2
AFAT-I(ours) 82.2 77.7 92.7 77.2 88.6 83.7±0.3 91.0 60.3 67.3 72.9±0.6 82.7 57.8 72.4 70.9±0.4

Table 5. Mean F1 (%) with random outliers (in line with [28]).
outlier (Pascal VOC, intersection) 0 1 2 3 4 5

EAGM [28] 70.5 60.6 53.3 47.6 42.6 38.4
NGMv2 [45]+AFAT-U (ours) 72.2 65.9 61.2 57.5 53.8 50.3

3D coordinates, all visible anchors are projected back to the
2D image based on the camera pose matrices provided by
IMC-PT. The 2D coordinates and the corresponding anchor
indices are saved together with the RGB image to form our
new benchmark. Please refer to the supplementary material
for more details about building the new benchmark.

4.3. Details of IMC-PT-SparseGM
Our IMC-PT-SparseGM benchmark consists of images

of 16 tourism attractions around the world. Each image
has a file storing its visible keypoints. Each tourism at-
traction corresponds to an npz file of meta-information in-
cluding the image names and the number of keypoints. As
shown in Tbl. 1, among all visual graph matching bench-
marks, our IMC-PT-SparseGM has the largest number of
images (25,765), the largest number of nodes (21.36/44.48),
and the highest partial rate (57.3%/55.5%). Our benchmark
also owns the flexibility to further scale up by simply ad-
justing the anchor numbers and regerenrating. Compared
to [5, 6] that mainly consider matching semantic keypoints
from single objects, the IMC-PT-SparseGM benchmark in-
volves matching larger scenes and we take a step closer to
the real-world downstream tasks e.g. structure from motion.

5. Experiments
5.1. Metric and Peer Methods

Evaluation metric. We report the matching F1
scores between given graph pairs. The matching F1
score is the harmonic mean of matching precision and
matching recall. Given predicted permutation matrix
Ppred containing kpred matches, and ground truth per-
mutation matrix Pgt containing kgt matches, denote �
as element-wise product, matching F1 score is com-
puted as precision =

∑
(Ppred �Pgt) /kpred, recall =∑

(Ppred �Pgt) /kgt,F1 = 2 · precision·recall
precision+recall . We also run

5 random restarts for peer methods whose performances are
close, and report the 95% confidence intervals as error bars.

Our Approach. Our method can serve as a partial
matching handling (PMH) plugin and can be integrated
with any GM network whose output is a doubly stochas-
tic matrix. We name our PMH method Attention-Fused
Aggregation with Top-k-GM (AFAT). AFAT-I and AFAT-
U refer to using AFA-I module and using AFA-U module
to estimate k, respectively. To show our flexibility, we im-
plement based on NGMv2 [45], a SOTA quadratic matching
network, and GCAN [17], a SOTA linear matching network.

PMH baselines. In [17, 30], partial matching is handled
by adding dummy rows and columns to the Sinkhorn al-
gorithm. In [17], the discretization step is done by Gurobi
commercial solver. We name this method as dummy node,
and we replace the commercial solver with an adapted Hun-
garian algorithm [20], whose output is exactly the same. We
also compare with the straightforward thresholding method
whereby the threshold value is carefully tuned.

GM baselines. We also conduct experiments on PCA-
GM [44] and BBGM [29] without PMH for comparison.
Conceptually, PCA-GM and many other networks [11, 51,
53] could also fit into our top-k-GM learning paradigm
because their output is doubly-stochastic, yet BBGM can-
not because it is based on discrete black-box solver. The
learning-free partial GM solver ZACR [43] is also se-
lected as a baseline, which owns the ability to predict the
inlier number k during GM solving. The GM network
EAGM [28] also considers partial graph matching in its net-
work architecture. Its official implementation is based on
TensorFlow, and could not be easily adapted to the more
popular PyTorch experiment protocol. Therefore, instead of
reimplementing EAGM in PyTorch, we compare our AFAT
on the same setting as [28]. Note that we refrain from di-
rectly comparing with multi-graph methods in experiments
because they use extra information.

Testbed. All experiments are done on our workstation
with AMD 3970X, RTX 3090, and 128GB memory.

5.2. Results and Discussions
Pascal VOC Keypoints. We conduct experiments on

Pascal VOC Keypoints dataset [10] with Berkeley annota-
tions [5], containing 20 classes of instances. Outliers are
prevalent due to occlusion and variances in scale and pose.
We crop the instances around bounding boxes and resize the

Table 6. Ablation study addressing the necessity of learning. We
report mean F1 (%), assuming that the ground truth k is given.

Dataset Solver Alg. 1 in test Train Alg. 1 in train F1

PascalVOC

RRWM % % % 20.3
RRWM ! % % 19.4
NGMv2 ! ! % 60.7
NGMv2 ! ! ! 62.3

WillowObject

RRWM % % % 20.1
RRWM ! % % 18.9
NGMv2 ! ! % 85.2
NGMv2 ! ! ! 85.5

RRWM % % % 39.6
IMC-PT- RRWM ! % % 39.1

SparseGM-50 NGMv2 ! ! % 72.3
NGMv2 ! ! ! 73.6

RRWM % % % 34.6
IMC-PT- RRWM ! % % 34.0

SparseGM-100 NGMv2 ! ! % 70.7
NGMv2 ! ! ! 71.8

images to 256 × 256, and take 7,020 images as the train-
ing set and other 1,682 images as the test set. The “un-
filtered” setting is followed, and experimental results are
shown in Tbl. 2. The improvements w.r.t. other PMH meth-
ods brought by our AFAT-U and AFAT-I are consistent with
different GM network embodiments.

We also conduct a fair comparison with [28] following
their setting, where all outliers are firstly removed (inter-
section filtering), and random outliers are then added to the
second graph. The number of outliers is from 0 to 5. We di-
rectly run an evaluation on our pretrained NGMv2+AFAT-U
model, and the results are listed in Tbl. 5, and our method
also demonstrates better robustness against random outliers.

Willow Object Class. The dataset [6] contains 5 cat-
egories of images that have been aligned in pose, and its
original version does not have outliers. Each image has 10
keypoints. To build a partial matching setting, we randomly
add 1 to 10 background outliers to each image. We select
20 images as the training set in each category and take the
remaining images for test. The left half of Tbl. 4 shows that
our methods outperform other PMH methods.

IMC-PT-SparseGM. We also perform experiments on
our released IMC-PT-SparseGM benchmark, which is more
relevant to partial graph matching in real world. Following
the train-test split in [18], we take 13 classes as the training
set and the other 3 classes as the test set. Experiments are
conducted on the benchmark with both 50 anchors and 100
anchors, and results are reported in the right half of Tbl. 4.
The standard, dense implementation of NGMv2 [45] cannot
fit into the GPU memory, thus our sparse implementation
introduced in Sec. 3.3 is adopted. The improvement of our
AFAT-U and AFAT-I is consistent in all settings.

5.3. Further Studies
Necessity of learning in top-k-GM. We propose a learn-

ing paradigm by integrating differentiable top-k-GM algo-

(a) Pascal VOC Keypoints (b) IMC-PT-SparseGM-50
Figure 5. Relations between matching F1 score and k error.

rithm instead of a trivial combination of top-k selection and
GM solvers. In this ablation study, we prove the neces-
sity of learning in our paradigm. We consider RRWM and
NGMv2, a traditional GM solver and an outlier-blind neu-
ral GM solver, respectively, and perform the ablation study
in Tbl. 6. We decouple the possible influence of k estima-
tion error by dropping the AFA module and using ground
truth k instead. We can see that directly combining top-k
algorithm with the traditional solver RRWM leads to infe-
rior performance, and coupling differentiable top-k in train-
ing distinctly improves the performance of the neural solver
NGMv2, indicating the effectiveness of our proposed learn-
ing paradigm by integrating differentiable top-k-GM.

Impact of the accuracy of k prediction. k is crucial
in our top-k-based GM, so it is necessary to understand (at
least empirically) the relation between matching accuracy
and k error. In this study, we add Gaussian random noises
to kgt to simulate different levels of k errors and evaluate
the matching accuracy of NGMv2 based on the noisy ks on
Pascal VOC and IMC-PT-SparseGM (50 anchors). Fig. 5
shows the relationship between matching F1 and k error.
We also plot the accuracy and k error of our AFA models,
worth noting that the error pattern of AFA networks may
be different from Gaussian noise, thus they do not strictly
lie on the yellow curve. As shown in Fig. 5, there is an
“acceptable k-error range”, where the acceptable k-error is
also proportional to the number of nodes. Besides, our AFA
models all lie within the “acceptable k-error range”.

6. Conclusion
We have presented a top-k-based framework to tackle

the partial graph matching problem, which is ubiquitous in
vision. Specifically, we devise an end-to-end and outlier-
aware neural pipeline. Then an attention-based graph neural
network is devised to estimate k. A new benchmark based
on IMC-PT 2020, which is better suited for partial graph
matching problem is remade and will be released. Exten-
sive experimental results on both classic and our new bench-
marks, including the comparison with peer partial matching
handling methods and the studies on our integrated learn-
ing paradigm and the acceptable range of k error, show the
effectiveness and significance of our work.

References
[1] Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou

Sun, and Wei Wang. Simgnn: A neural network approach
to fast graph similarity computation. In Proceedings of the
Twelfth ACM International Conference on Web Search and
Data Mining, pages 384–392, 2019. 2, 4

[2] Yunsheng Bai, Hao Ding, Yizhou Sun, and Wei Wang. Con-
volutional set matching for graph similarity. arXiv preprint
arXiv:1810.10866, 2018. 2, 4, 5

[3] Yunsheng Bai, Derek Xu, Yizhou Sun, and Wei Wang.
Glsearch: Maximum common subgraph detection via learn-
ing to search. In ICML, pages 588–598, 2021. 3

[4] Florian Bernard, Johan Thunberg, Paul Swoboda, and Chris-
tian Theobalt. HiPPI: Higher-order projected power itera-
tions for scalable multi-matching. In Int. Conf. Comput. Vis.,
pages 10284–10293, 2019. 3

[5] L. Bourdev and J. Malik. Poselets: Body part detectors
trained using 3d human pose annotations. In Int. Conf. Com-
put. Vis., pages 1365–1372. IEEE, 2009. 2, 7

[6] Minsu Cho, Karteek Alahari, and Jean Ponce. Learning
graphs to match. In Int. Conf. Comput. Vis., pages 25–32,
2013. 2, 7, 8

[7] Minsu Cho, Jungmin Lee, and Kyoung Mu Lee. Reweighted
random walks for graph matching. In Eur. Conf. Comput.
Vis., pages 492–505. Springer, 2010. 2, 11

[8] Minsu Cho, Jian Sun, Olivier Duchenne, and Jean Ponce.
Finding matches in a haystack: A max-pooling strategy for
graph matching in the presence of outliers. In CVPR, pages
2083–2090, 2014. 3

[9] Marco Cuturi. Sinkhorn distances: Lightspeed computation
of optimal transport. Neural Info. Process. Systems, pages
2292–2300, 2013. 3

[10] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. International journal of computer
vision, 88(2):303–338, 2010. 7

[11] Matthias Fey, Jan E Lenssen, Christopher Morris, Jonathan
Masci, and Nils M Kriege. Deep graph matching consensus.
In Int. Conf. Learn. Rep., 2020. 1, 7

[12] Martin A Fischler and Robert C Bolles. Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Communications
of the ACM, 24(6):381–395, 1981. 3

[13] Quankai Gao, Fudong Wang, Nan Xue, Jin-Gang Yu, and
Gui-Song Xia. Deep graph matching under quadratic con-
straint. In Comput. Vis. Pattern Recog., pages 5069–5078,
June 2021. 1, 3

[14] Steven Gold and Anand Rangarajan. A graduated assignment
algorithm for graph matching. Trans. Pattern Anal. Mach.
Intell., 18(4):377–388, 1996. 2

[15] Jiawei He, Zehao Huang, Naiyan Wang, and Zhaoxiang
Zhang. Learnable graph matching: Incorporating graph par-
titioning with deep feature learning for multiple object track-
ing. In Comput. Vis. Pattern Recog., 2021. 1

[16] Bo Jiang, Pengfei Sun, Ziyan Zhang, Jin Tang, and Bin Luo.
Gamnet: Robust feature matching via graph adversarial-

matching network. In Proceedings of the 29th ACM Interna-
tional Conference on Multimedia, pages 5419–5426, 2021.
1

[17] Zheheng Jiang, Hossein Rahmani, Plamen Angelov, Sue
Black, and Bryan M Williams. Graph-context attention net-
works for size-varied deep graph matching. In Comput. Vis.
Pattern Recog., pages 2343–2352, 2022. 1, 2, 3, 5, 6, 7

[18] Yuhe Jin, Dmytro Mishkin, Anastasiia Mishchuk, Jiri Matas,
Pascal Fua, Kwang Moo Yi, and Eduard Trulls. Image
Matching across Wide Baselines: From Paper to Practice.
Int. J. Comput. Vis., 2020. 1, 2, 6, 8, 11

[19] Harold W Kuhn. The hungarian method for the assignment
problem. Naval research logistics quarterly, 2(1-2):83–97,
1955. 4

[20] H. W. Kuhn. The hungarian method for the assignment prob-
lem. In Export. Naval Research Logistics Quarterly, pages
83–97, 1955. 7

[21] Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Du-
won Park, and Youngjune Gwon. Matrix encoding networks
for neural combinatorial optimization. Advances in Neural
Information Processing Systems, 34:5138–5149, 2021. 5

[22] E. L. Lawler. The quadratic assignment problem. Manage-
ment Science, 9(4):586–599, 1963. 1, 2

[23] M. Leordeanu and M. Hebert. A spectral technique for corre-
spondence problems using pairwise constraints. In Int. Conf.
Comput. Vis., pages 1482–1489, 2005. 2

[24] Marius Leordeanu, Martial Hebert, and Rahul Sukthankar.
An integer projected fixed point method for graph matching
and map inference. In Neural Info. Process. Systems, pages
1114–1122. Citeseer, 2009. 2

[25] Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and
Pushmeet Kohli. Graph matching networks for learning the
similarity of graph structured objects. In Int. Conf. Mach.
Learn., pages 3835–3845. PMLR, 2019. 4

[26] Chang Liu, Chenfei Lou, Runzhong Wang, Alan Yuhan Xi,
Li Shen, and Junchi Yan. Deep neural network fusion via
graph matching with applications to model ensemble and
federated learning. In Int. Conf. Mach. Learn., pages 13857–
13869. PMLR, 2022. 1

[27] A. Nowak, S. Villar, A. Bandeira, and J. Bruna. Revised
note on learning quadratic assignment with graph neural net-
works. In Data Science Workshop, 2018. 1, 2

[28] Jingwei Qu, Haibin Ling, Chenrui Zhang, Xiaoqing Lyu, and
Zhi Tang. Adaptive edge attention for graph matching with
outliers. In Int. Joint Conf. Artificial Intell., 2021. 3, 7, 8

[29] Michal Rolı́nek, Paul Swoboda, Dominik Zietlow, Anselm
Paulus, Vı́t Musil, and Georg Martius. Deep graph matching
via blackbox differentiation of combinatorial solvers. In Eur.
Conf. Comput. Vis., pages 407–424. Springer, 2020. 3, 5, 6,
7, 11

[30] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz,
and Andrew Rabinovich. Superglue: Learning feature
matching with graph neural networks. In Comput. Vis. Pat-
tern Recog., pages 4938–4947, 2020. 1, 6, 7

[31] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016. 6, 11

[32] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise view selection for un-
structured multi-view stereo. In European Conference on
Computer Vision (ECCV), 2016. 6, 11

[33] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 5

[34] R. Sinkhorn and A. Rangarajan. A relationship between arbi-
trary positive matrices and doubly stochastic matrices. Ann.
Math. Statistics, 1964. 3, 4

[35] Richard Socher, Danqi Chen, Christopher D Manning, and
Andrew Ng. Reasoning with neural tensor networks for
knowledge base completion. Advances in neural informa-
tion processing systems, 26, 2013. 4

[36] J. Sun, Z. Shen, Y. Wang, H. Bao, and X. Zhou. Loftr:
Detector-free local feature matching with transformers. In
Comput. Vis. Pattern Recog., 2021. 6

[37] Paul Swoboda, Ashkan Mokarian, Christian Theobalt, Flo-
rian Bernard, et al. A convex relaxation for multi-graph
matching. In Comput. Vis. Pattern Recog., pages 11156–
11165, 2019. 3

[38] P. Swoboda, C. Rother, H.A. Alhaija, D. Kainmuller, and
B. Savchynskyy. A study of lagrangean decompositions and
dual ascent solvers for graph matching. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2017. 6, 7

[39] Lorenzo Torresani, Vladimir Kolmogorov, and Carsten
Rother. A dual decomposition approach to feature correspon-
dence. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(2):259–271, 2012. 3

[40] R. Tron, X. Zhou, C. Esteves, and K. Daniilidis. Fast multi-
image matching via density-based clustering. In Comput.
Vis. Pattern Recog., pages 4057–4066, 2017. 3

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Il-
lia Polosukhin. Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017. 4, 5

[42] Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph at-
tention networks. stat, 1050:20, 2017. 5

[43] Fudong Wang, Nan Xue, Jin-Gang Yu, and Gui-Song Xia.
Zero-assignment constraint for graph matching with outliers.
In CVPR, pages 3033–3042, 2020. 3, 6, 7

[44] Runzhong Wang, Junchi Yan, and Xiaokang Yang. Com-
binatorial learning of robust deep graph matching: an em-
bedding based approach. Trans. Pattern Anal. Mach. Intell.,
2020. 2, 3, 4, 5, 6, 7, 11

[45] Runzhong Wang, Junchi Yan, and Xiaokang Yang. Neu-
ral graph matching network: Learning lawler’s quadratic
assignment problem with extension to hypergraph and
multiple-graph matching. Trans. Pattern Anal. Mach. Intell.,
44(9):5261–5279, 2022. 1, 2, 3, 5, 6, 7, 8

[46] Runzhong Wang, Junchi Yan, and Xiaokang Yang. Unsu-
pervised learning of graph matching with mixture of modes
via discrepancy minimization. Trans. Pattern Anal. Mach.
Intell., 2023. 11

[47] Runzhong Wang, Tianqi Zhang, Tianshu Yu, Junchi Yan,
and Xiaokang Yang. Combinatorial learning of graph edit
distance via dynamic embedding. In Comput. Vis. Pattern
Recog., pages 5241–5250, 2021. 1

[48] Yujia Xie, Hanjun Dai, Minshuo Chen, Bo Dai, Tuo Zhao,
Hongyuan Zha, Wei Wei, and Tomas Pfister. Differentiable
top-k with optimal transport. Advances in Neural Informa-
tion Processing Systems, 33:20520–20531, 2020. 2, 3

[49] Yu Xiong, Qingqiu Huang, Lingfeng Guo, Hang Zhou, Bolei
Zhou, and Dahua Lin. A graph-based framework to bridge
movies and synopses. In Int. Conf. Comput. Vis., pages
4592–4601, 2019. 1

[50] Zhitao Ying, Andrew Wang, Jiaxuan You, Chengtao Wen,
Arquimedes Canedo, and Jure Leskovec. Neural subgraph
matching. arXiv preprint arXiv:2007.03092, 2020. 3

[51] Tianshu Yu, Runzhong Wang, Junchi Yan, and Baoxin Li.
Learning deep graph matching with channel-independent
embedding and hungarian attention. In Int. Conf. Learn.
Rep., 2020. 2, 3, 7

[52] A. Zanfir and C. Sminchisescu. Deep learning of graph
matching. In Comput. Vis. Pattern Recog., pages 2684–2693,
2018. 1, 2, 3

[53] Kaixuan Zhao, Shikui Tu, and Lei Xu. Ia-gm: A deep bidi-
rectional learning method for graph matching. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 3474–3482, 2021. 1, 2, 3, 7

(a) 3D point labels (blue) and anchors (red)
(b) Examples (raw images with built graphs) for visual graph matching

Figure 6. The 3D points in (a) are detected by colmap [31, 32] which are available as labels in IMC-PT [18]. The blue points denote our
selected anchors, based on which our IMC-PT SparseGM-50 is built, as shown in (b). The lines connecting anchors are the edges we build
through Delaunay triangulation.

Table 7. Comparison of existing visual graph matching benchmarks.

dataset name # instances # classes avg # nodes avg # edges # universe partial rate best-known f1

CMU house/hotel 212 2 30 \ 30 0.00% 100% (RRWM [7])
Willow ObjectClass 404 5 10 \ 10 0.00% 97.8% (GANN [46])
CUB2011 11,788 200 12 \ 15 20.00% 83.2% (PCA-GM [44])
Pascal VOC Keypoint 8,702 20 9.07 \ 6 to 23 28.50% 62.8% (BBGM-Multi [29])
IMC-PT-SparseGM-50 (ours) 25,765 16 21.36 54.71 50 57.28% 72.9% (ours)
IMC-PT-SparseGM-100 (ours) 25,765 16 44.48 123.99 100 55.52% 71.5% (ours)

A. Details of IMC-PT-SparseGM Benchmark

A.1. Visualization

See Fig. 6a for a visualization of the 3D point cloud built
from the collection of Reichstag photos, where most points
gather near the main part of the building. The red points
are the anchors (50 anchors in this example) that are re-
garded as the keypoints in our visual graph matching bench-
mark. These anchor points are then projected back to the 2D
images, whereby the visibility of anchors is judged by the
method described in the main paper. Examples of images
and keypoints from our benchmark are visualized in Fig. 6.

A.2. Details about hyperparameters

We elaborate on the following three insights of our pro-
posed approach to transforming the original IMC-PT image
matching dataset to our IMC-PT-SparseGM benchmark for
visual graph matching. These insights are omitted in the
main paper due to page limitations. Our approach only in-
volves four hyperparameters:

1) To extract some keypoints that can well represent the

feature of the original building and to reduce the impact of
noise, we set one hyperparameter of the frequency threshold
of keypoints existence, screening out keypoints frequently
appearing in the sample images.

2) To reduce the complexity of graph matching, we ran-
domly extract a hyperparameter of 50 keypoints from the
keypoints we selected before. During the extraction, to
maintain a good representation of the original building, we
set a hyperparameter of the minimal euclidean distance of
two keypoints to ensure that the extracted keypoints are rel-
atively evenly distributed in the main part of the building.

3) For every sample image of a certain building, we in-
tend to check whether the extracted keypoints exist in the
image. Using the annotation of the whole keypoints exist-
ing in the image, for every selected keypoints, we calculate
its minimal euclidean distance between the keypoints in the
image and judge its existence in the image based on an-
other minimal euclidean distance hyperparameter threshold
which indicates whether the keypoint is close to the present
image or not, removing some of the keypoints covered by
the exterior scene to some extent.

Table 8. Number of visual graphs in each class of IMC-PT-SparseGM benchmark. * refers to test class.

class name brandenburg gate grand place brussels palace of westminster reichstag*

visual graphs 1,363 1,083 983 75

class name taj mahal westminster abbey buckingham palace hagia sophia interior

visual graphs 1,312 1,061 1,676 889

class name pantheon exterior sacre coeur* temple nara japan colosseum exterior

visual graphs 1,401 1,179 904 2,063

class name notre dame front facade prague old town square st peters square* trevi fountain

visual graphs 3,765 2,316 2,504 3,191

Table 9. F1 (%) on SPair-71k (unfiltered setting). Our methods are marked as gray.

GM Network PMH aero bike bird boat bottle bus car cat chair cow dog horse mbike person plant sheep train tv mean

ZACR ZACR 32.9 33.3 45.7 24.6 62.0 13.5 36.0 56.2 17.4 47.5 32.7 19.0 40.7 42.7 37.3 34.8 52.5 60.0 38.3
PCA-GM None 36.5 25.6 48.9 24.7 50.7 29.1 19.2 54.6 30.1 39.1 42.9 34.0 31.3 27.1 70.5 31.1 56.6 75.2 40.4

BBGM None 42.9 43.8 65.3 34.6 62.6 47.6 25.6 68.0 38.6 62.0 57.8 42.8 44.1 36.0 83.2 45.4 86.7 90.3 54.3

Ngmv2

None 45.4 42.3 61.0 31.2 62.2 53.3 34.2 65.3 37.0 59.5 54.7 41.3 44.8 38.9 77.5 44.2 77.8 89.9 53.4
Thresholding 50.2 42.9 63.4 29.9 62.1 53.9 34.8 65.7 37.3 62.7 56.1 43.8 45.7 41.8 77.1 45.2 79.0 90.4 54.6±0.5
Dummy node 47.7 41.6 62.1 30.3 59.0 49.7 27.4 68.3 33.9 62.4 57.3 46.7 46.4 42.7 78.7 43.5 80.5 89.5 53.8±0.4
AFAT-U(ours) 50.3 43.5 63.8 32.4 59.0 60.1 39.7 68.6 36.1 63.6 56.5 46.3 51.4 43.3 77.0 51.2 81.1 89.4 56.3±0.4
AFAT-I(ours) 50.4 43.6 63.9 32.1 61.2 58.5 38.0 68.4 35.7 62.7 56.4 47.7 51.9 44.3 78.5 50.7 79.2 91.2 56.4±0.6

GCAN
Dummy node 49.0 41.3 64.0 30.3 57.3 55.0 37.4 64.8 36.6 63.0 58.0 44.4 46.4 42.6 68.4 42.3 83.2 91.9 54.2±0.3
AFAT-U(ours) 46.7 43.3 65.8 33.3 61.5 54.9 35.2 68.4 37.7 59.9 56.0 47.6 47.2 43.5 80.3 47.7 83.8 89.0 55.7±0.4
AFAT-I(ours) 46.8 44.3 65.9 32.4 61.5 53.8 33.7 68.4 38.1 60.1 56.3 47.9 48.3 43.8 81.2 48.4 82.9 88.0 55.7±0.4

A.3. More Details

Tbl. 7 shows comparison among our released IMC-
PT-SparseGM benchmark and other existing vision graph
matching benchmarks. Note that in our released IMC-
PT-SparseGM benchmark, the edges are previously built
through Delaunay triangulation, thus saving users’ time
of online graph-building. Tbl. 8 exhibits number of vi-
sual graphs (with raw images) in each class of IMC-PT-
SparseGM benchmark.

In addition, the anchors are not fixed in IMC-PT-
SparseGM, and can be edited via tuning hyperparame-
ters, allowing users to build data that fulfills their own
demands. We provide code and instructions for users to
build their own data in IMC-PT-SparseGM dataset page:
https://github.com/Thinklab-SJTU/IMCPT-
SparseGM-dataset.

B. Results on SPair-71k Dataset

To further validate the general effectiveness of our pro-
posed methods, we also perform experiments on SPair-
71k (http://cvlab.postech.ac.kr/research/
SPair-71k/) dataset. The dataset contains 18 categories
of total 70,958 image pairs, including 53,340 for training
and 12,234 for testing. The image pairs are different in
scale, truncation, and occlusion, whereby outliers are preva-
lent. We still follow the “unfiltered” setting and show our

Algorithm 2 GreedyTopK

Input: confidence matrix Dconf ; k; permutation matrix P.
Output: final permutation matrix P̃.

1: Dconf = Dconf �P; . filter the matching confidence
2: set P̃ to all-zero matrix; set m = 0; . initialization
3: while m < k do
4: r, c = argmax (Dconf); . the most confident match
5: P̃r,c = 1; . select this match
6: Dconf r,c = 0; . to select next match
7: m = m+ 1; . count selected matches
8: end while
9: return P̃; . final matching result, for testing

experimental results in Tbl. 9. Consistent with the exper-
imental results on other datasets, our methods outperform
other PMH methods on both GM network embodiments.

C. GreedyTopK Algorithm for Post-process
In our proposed framework, a GreedyTopK algorithm is

adopted in inference stage to greedily select top-k matches
based on the confidence from the output of Hungarian al-
gorithm, i.e., the permutation matrix P. Algorithm 2 shows
the procedure of GreedyTopK algorithm, where � denotes
element-wise product.

https://github.com/Thinklab-SJTU/IMCPT-SparseGM-dataset
https://github.com/Thinklab-SJTU/IMCPT-SparseGM-dataset
http://cvlab.postech.ac.kr/research/SPair-71k/
http://cvlab.postech.ac.kr/research/SPair-71k/

	. Introduction
	. Related Work
	. Proposed Method
	. Top-k-based Deep Partial Graph Matching
	. Attention-Fused Aggregation for k Prediction
	AFA-I: Individual Graph Modeling
	AFA-U: Unified Bipartite Graph Modeling
	Training the AFA Modules

	. Implementation Details

	. Our IMC-PT-SparseGM benchmark
	. Introducing The Original IMC-PT Benchmark
	. Building IMC-PT-SparseGM benchmark
	. Details of IMC-PT-SparseGM

	. Experiments
	. Metric and Peer Methods
	. Results and Discussions
	. Further Studies

	. Conclusion
	. Details of IMC-PT-SparseGM Benchmark
	. Visualization
	. Details about hyperparameters
	. More Details

	. Results on SPair-71k Dataset
	. GreedyTopK Algorithm for Post-process

