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Abstract—Graph matching (GM) has been a long-standing combinatorial problem due to its NP-hard nature. Recently (deep)
learning-based approaches have shown their superiority over the traditional solvers while the methods are almost based on supervised
learning which can be expensive or even impractical. We develop a unified unsupervised framework from matching two graphs to
multiple graphs, without correspondence ground truth for training. Specifically, a Siamese-style unsupervised learning framework is
devised and trained by minimizing the discrepancy of a second-order classic solver and a first-order (differentiable) Sinkhorn net as two
branches for matching prediction. The two branches share the same CNN backbone for visual graph matching. Our framework further
allows unsupervised learning with graphs from a mixture of modes which is ubiquitous in reality. Specifically, we develop and unify the
graduated assignment (GA) strategy for matching two-graph, multi-graph, and graphs from a mixture of modes, whereby two-way
constraint and clustering confidence (for mixture case) are modulated by two separate annealing parameters, respectively. Moreover,
for partial and outlier matching, an adaptive reweighting technique is developed to suppress the overmatching issue. Experimental
results on real-world benchmarks including natural image matching show our unsupervised method performs comparatively and even
better against two-graph based supervised approaches.
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1 INTRODUCTION

G RAPH matching (GM) computes the node-to-node cor-
respondences among two or multiple graphs, by utiliz-

ing the structural information in graphs. It has wide applica-
tions for real-world graph alignment across vision [1], social
networks [2], knowledge graph [3], etc. GM is in general NP-
hard [4], and the simplest form of graph matching namely
two-graph matching (GM) has the general formulation
namely Quadratic Assignment Problem (QAP) [5], [6], [7].
Other papers focus on the more challenging setting of jointly
matching among multiple graphs, known as multi-graph
matching (MGM) [8], [9], [10], [11], and even graphs from
different categories (i.e. mixture of modes), known as multi-
graph matching with a mixture of modes (MGM3) [12].
Considering the rich, popular, and well-developed visual
benchmarks and their practical importance towards down-
stream applications [1], [13], [14], this paper focuses on the
application of graph matching on computer vision, by spec-
ifying typical models e.g. convolutional neural networks as
the main model for learning. To verify the effectiveness of
our approach in real-world problems, we further investigate
the natural image matching problem which particularly
involves the challenges of partial matching and outliers, as
will be detailed later in the paper.

Traditional GM algorithms mainly focus on how to ef-
ficiently solve the underlying QAP via either continuous
relaxation [5], [6], [7], [15], [16] or discrete search algo-
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rithms [17], [18], using pre-given affinity metric between
nodes and edges, e.g. Gaussian kernels, whose expressive-
ness power can be restricted due to the limited model
capacity and unlearnable nature. In fact, the proper formu-
lation of the optimization problem, i.e. designing the affinity
metric between graph nodes and edges, still remains an
open problem. Advances in machine learning have inspired
learnable affinity functions as well as the node/edge feature
representations for graph matching especially in vision,
from early shallow models [19], [20], [21] to recent deep
neural networks [22], [23], [24].

A popular deep learning GM pipeline in literature usu-
ally include perception modules (e.g. VGG16 [25]), struc-
tural learning modules (e.g. GCN [26]), and affinity metrics
(e.g. vector-space similarity). These deep learning mod-
ules have shown superior performance over fixed affinity
metrics and representation (e.g. SIFT descriptor [27]) on
challenging real-world benchmarks [21], [28], [29].

However, current supervised deep GM requires costly
annotation on large-scaled training data, which restricts
the real-world application of modern deep graph matching
methods. Though appealing, developing an unsupervised
learning algorithm on graph matching is non-trivial, be-
cause GM methods often involve indifferentiable discretiza-
tion steps. Besides, unsupervised learning without ground
truth labels is desirable yet still challenging for most ma-
chine learning tasks. Seeing that the recent success of unsu-
pervised image classification models [30], [31] share a dis-
crepancy minimization pipeline considering two branches
of predictions from the same data, in this paper, we present a
simple yet effective unsupervised learning pipeline whereby
GM solvers offer different matching predictions w.r.t. the
differentiable Sinkhorn branch. Both branches share the
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Fig. 1. Example of matching with a mixture of two modes. Within mode 1
or mode 2 (intra-mode) there is full-matching, and between mode 1 and
mode 2 (inter-mode) the matching is non-valid.

same CNN backbone (in a Siamese-style [32]), resulting in a
discrepancy minimization pipeline. Besides, GM solvers are
probably more accurate because they utilize both node-wise
and structural information in matching [9]. Without loss of
generality, we resort to the classic graduated assignment
algorithm dating back to [16] due to its adaptability to
various graph matching settings as will be shown later in the
paper. In MGM, the joint consideration of multiple graphs
utilizes more information and can also be addressed by our
unsupervised learning pipeline.

A realistic yet challenging setting is multi-graph match-
ing from a mixture of modes (MGM3), where graphs may
belong to different groups and we need to jointly solve
matching and clustering (see Fig. 1)1. This problem has
seldom been considered apart from one loosely relevant
work [12], which is learning-free, and clustering is per-
formed after matching. In contrast, observing the fact that
matching and clustering are inherently interleaved to each
other, an MGM3 approach is developed where clustering
and matching are performed alternatively with gradually
increased confidence. Furthermore, MGM3 is also covered
with our unified unsupervised learning framework, show-
ing the potential of real-world applications of our method.

A preliminary version of this paper has appeared as
a conference paper in [33] that deals with multiple graph
matching and the mixture situation of graphs2, and this
journal version has further incorporated the classic two-
graph matching case, as well as the more challenging and
more general partial+outlier matching setting, and makes
the following overall contributions:

1) We establish an unsupervised framework for deep
GM, in contrast to the majority line of works based on
supervised learning. Though our experiments are mainly

1. In this paper we interchangeably use the terms “class”, “cluster”
and “mode”, while “class” is mainly used in the context of adopting
the cross-entropy loss. Recall that our approach is unsupervised thus
we also use the terms “cluster” and “mode”.

2. Compared with [33], the extensions include: i) an unsupervised
framework for graph matching, and particularly for two-graph match-
ing, by minimizing the discrepancy between the fine-grained second-
order graduated assignment solver and the Sinkhorn network that only
uses the node-wise features; ii) An improved version of graduated
assignment algorithm with adaptive reweighting of matching pairs to
suppress the overmatching in the presence of occluded inliers and
outliers; iii) We propose a new graph matching learning paradigm
in combination of unsupervised pretraining (by our presented un-
supervised technique) and supervised finetuning; iv) Integration of
the unsupervised deep graph matching model into a natural image
matching pipeline involving keypoint detectors and downstream stereo
estimators, with the new application of structure-from-motion task;
v) Comprehensive experiments for our extended methods in compari-
son with more baselines, more problem settings and more datasets.

𝒢1 𝒢2 𝒢3
(a) Full Matching (b) Partial Matching

𝒢1 𝒢2 𝒢3

𝒢1 𝒢2 𝒢3
(c) Outlier Matching

𝒢1 𝒢2 𝒢3
(d) Partial+Outlier Matching

outliers 

Fig. 2. Comparison of the four GM settings over multiple graphs (same
color denotes correspondence): (a) the classical full matching where all
node pairs have a valid matching, (b) partial matching where some inlier
nodes are occluded and all nodes partially correspond to a universe
(here the universe has 4 nodes), (c) outlier matching where the noisy
outliers do not correspond to any nodes in the universe, (d) the mix
of both partial and outlier matching, which is the most challenge yet
the most realistic setting. Most existing papers [9], [23], [36], [37] only
consider (a), some recent efforts [33], [35] also consider (b), and in this
paper we propose a robust approach considering (a)(b)(d). (c) is less
common because outliers usually appear together with partial matching.

conducted on existing benchmarks that often involve visual
matching while the unsupervised framework itself is gen-
eral and independent of the specific choice of each module.

2) Under the proposed framework, we develop GM
solvers based on traditional learning-free solvers for the
settings ranging from two-graph matching, multiple graph
matching, to the general case that multi-graph matching
from a mixture of modes. Moreover, our method benefits
from its robustness to the partial matching and outlier
matching cases, whereby an adaptive reweighting of match-
ing affinities is proposed to suppress the overmatching issue
in the presence of occluded inliers and outliers (see Fig. 2).

3) Evaluation is conducted in a variety of settings and
on different benchmarks, showing a strong performance for
both matching and clustering over graphs. In particular:

i) We compare our unsupervised method (without any
finetuning using additional labels) directly with state-of-the-
art supervised GM networks [34], [35], [36] on extensive
benchmarks, and show that our method performs on par
with and sometimes even outperforms supervised methods.

ii) We adapt the pretraining+finetuning paradigm to GM
learning, by combining unsupervised pretraining (by our
unsupervised technique) and supervised finetuning. With-
out bells and whistles, we improve the accuracy and con-
vergence speed of state-of-the-art GM networks: BBGM [35]
(from 56.7 to 60.7) and NGMv2 [36] (from 59.0 to 59.4).

iii) We apply our unsupervised technique to the down-
stream image matching pipeline involving keypoint de-
tectors and stereo estimators, particularly further to the
structure-from-motion (SfM) task. Our approach notably
improves the state-of-the-art SuperGlue model [1] regarding
both matching accuracy and SfM pose-estimation accuracy.

2 RELATED WORKS

We discuss three aspects closely related to our methods: i)
unsupervised learning with self-correspondence, ii) graph
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matching and its extension with a mixture of modes; iii) the
downstream application of natural image matching.

2.1 Unsupervised Learning with Self-Correspondence
Unsupervised deep learning techniques emerge in both vi-
sion and graphs. The objective is often defined to minimize
the discrepancy of the two branches’ predictions from one
input sample e.g. an image, whereby various discrepancy
metrics are involved. In particular, many efforts have been
devoted to preventing the collapse of the solution to a trivial
constant one. One popular practice e.g. in SimCLR [30]
is introducing negative samples which the contrastive loss
tries to repulse. Another way is clustering e.g. in SwAV [38]
which incorporates online clustering into contrastive learn-
ing. Other techniques like momentum encoder are adopted
(see BYOL [31]) to enable negative-free unsupervised learn-
ing. Notably, [39] proposes to avoid model collapse by
simply stopping the gradient of one out of the two branches
for discrepancy minimization. Another line of related works
addresses unsupervised learning on structural data e.g.
graphs, which can be categorized as generative models ex-
ploiting the inherent dependency in graphs as a generative
process [40], [41], [42]; and contrastive models learning the
universal graph embedding by contrastive learning [43],
[44], [45]. In summary, though there exist a considerable
amount of works in unsupervised learning, while to our
best knowledge, there are few ones for GM.

Cycle-consistency means that the propagated matchings
should be consistent if the propagation path is a cycle, which
is widely used in computer vision, especially for unsu-
pervised or semi-supervised models [46]. In unsupervised
correspondence learning [47], [48], the network is trained
with a synthetically warped version of the original image to
provide pseudo supervision signals for end-to-end training.
While the warping can be limited for real-world image
matching, and thus leads to the risk of poor generaliza-
tion [49]. There are further efforts to create pseudo labels
by augmenting images from the dataset [50]. Differently,
we do not create any artificial version of the raw graph
or image data to enforce correspondence consistency as
a learning objective. Instead, we adopt two branches for
predicting the matching solutions respectively, both based
on the same learned features as input, and cycle-consistency
is utilized for jointly matching multiple graphs to improve
the prediction quality. Specifically, the loss function refers to
the two predictions’ discrepancy by cross-entropy.

2.2 Graph Matching and Match from a Mixture of Modes
Traditional methods directly solve the matching problem
without a trainable model, and mostly they consider the
setting for two graphs. Due to its NP-hard nature, different
approximation techniques have been devised ranging from
graduated assignment [16], [51], spectral matching [52],
random walk [5], to projection-based methods [7], [53], etc.
To handle the inherent illness in graph affinity modeling,
especially in the presence of noise and outliers, multiple
graphs are considered for joint matching [11], [54], [55],
which not only mitigates the local ambiguity but also brings
the problem into a more realistic setting. In many multi-
graph matching works [8], [9], the cycle-consistency has

served as an effective regularizer to achieve robustness
against outliers and noise. See the survey [56] and the
references therein for details about the traditional methods.

Learning for GM has received increasing attention [57],
from early shallow models [19], [21] to modern deep neural
networks [22]. The motivation is that the learned features
can be more informative for matching, as the task is as-
sumed to be different from recognition. Earlier works [58],
[59] adopt CNNs and GNNs for visual appearance and
structural information extraction, respectively. While the
more recent work [60], [61] have shown how to perform joint
graph structure learning and matching to lessen the reliance
on predefined graph structure. In particular, the graph
matching network GLAM [61] adopts a pure attention-
based framework for both graph learning and graph match-
ing and it achieves state-of-the-art performance on multiple
public datasets. In fact, in existing deep learning-based
models, the ground truth correspondences are needed for
supervised training, which calls for extensive and even un-
realistic labeling. In this paper, we take an initiative towards
label-free unsupervised learning of deep GM.

In addition, we consider partial matching in the sense
that only a subset of nodes can find their correspondences
from other graphs, which is very common due to the exis-
tence of ubiquitous outliers and occlusions in visual images.
There are a few works addressing this issue directly [54],
[55], [62] or indirectly [9], [37]. Matching with outliers is
another notable challenge in graph matching while existing
approaches [63], [64], [65] mainly exploit certain structural
patterns as priors e.g. motion, homography, pose, etc. In
this paper, we firstly identify the overmatching issues that
leads to partial and outlier-aware matching, and develop an
orthogonal approach by reweighting the affinities.

One step further, considering the real-world scenario
that the graphs for matching are not always from a single
mode, i.e. the graphs are often from a mixture of modes,
the seminal work [12] directly solves the joint matching
and clustering task for graphs from multiple modes. In
our preliminary version, we further devise a learning-based
pipeline for this problem with significantly improved per-
formance. In this extended work, we also cover the chal-
lenging case of matching from a mixture of modes.

2.3 Natural Image Matching

Graph matching can be used for natural image matching,
which is a fundamental problem in computer vision. Its
applications include structure-from-motion (SfM), simulta-
neous localization and mapping (SLAM), image registra-
tion, fusion, retrieval, etc. It involves several steps whereby
each step has attracted wide attention. In this section, we
mainly discuss the image matching pipeline, and readers are
referred to the comprehensive survey [66] for more details.

In general, image matching involves 1) keypoint de-
tection; 2) feature description; 3) matching; 4) consensus
filtering. Traditional keypoint detectors include corner de-
tectors [67], [68] and blob detectors [27]. Specifically, the
well-known SIFT method [27] offers both feature detection
and description. Recently, CNN-based feature detectors and
descriptors are proposed [69], [70]. For the matching step,
the naive nearest neighbor matching used to be popular, and



4

Sinkhorn

GM Solver GM Result

Node-Wise 

Matching 

Result Minimize 

Discrepancy

(Binary Cross 

Entropy)

stop 

gradient
CNN

Images

Fig. 3. An overview of the proposed unsupervised (visual) GM learning
pipeline. Here the GM solver in the white box can be any of the solvers
for matching either two-graph, multi-graph, or graphs from a mixture of
modes. The stop-gradient operation prohibits model degeneration [39].

some recent efforts [1] integrate the differentiable Sinkhorn
algorithm [71] for matching. [72] devises a detector-free end-
to-end network to tackle the image matching problem. Con-
sensus filtering aims at discarding wrong matches, whereby
RANSAC [63] and its variants are still well adopted. The
graph matching papers surveyed in Sec. 2.1 are viewed as
tackling special scenarios of image matching considering
little about the partial and outlier-aware matching. In this
paper, we also take a further step to resolve these challenges
that arise in image matching.

3 THE DISCREPANCY MINIMIZATION FRAMEWORK
FOR UNSUPERVISED GRAPH MATCHING

We present a general unsupervised learning framework of
deep graph matching by discrepancy minimization, where
the training process requires no manual ground truth
matching labels. Specifically, we consider three variants
of graph matching problems, namely two-graph match-
ing (GM), multi-graph matching (MGM), and multi-graph
matching with a mixture of modes (MGM3), also covering
practical scenarios with partial matching and outliers. These
settings cover most existing research works on graph match-
ing problems to our best knowledge.

3.1 The General Paradigm
An overview of our unsupervised learning pipeline is
shown in Fig. 3. In this paper, we consider G1,G2, . . . ,Gm,
and we define ni as the number of keypoints in Gi (in-
cluding the outliers and unmatchable inliers for partial
matching). The modules of our framework are as follows:

3.1.1 Feature Extraction
In this paper, our unsupervised GM learning framework
is embodied by a visual matching pipeline, which accepts
images as input. The images are processed by the feature ex-
tractor VGG16 [25] pretrained by ImageNet [73]. In line with
peer models [22], [23], [34], the relu4_2 and relu5_1 fea-
ture maps are extracted from VGG16 and then concatenated.
Inspired by ROI-Align in Mask R-CNN [74], the feature
vectors at the keypoint positions are obtained by a namely
feature align module which performs bi-linear interpolation
on the feature map. For each image, Fi ∈ Rni×l denotes the
l-dimensional feature of ni nodes extracted by CNN.

3.1.2 Computing Node-Wise Matching via Sinkhorn
Firstly, node-wise matching is computed from the inner-
product of node features in graph pair Gi,Gj :

Wij = Sinkhorn(FiF
>
j , τw) (1)

where Sinkhorn(M, τ) is the popular Sinkhorn algorithm
for matrix normalization [71]. Sinkhorn algorithm is viewed
as the differentiable and approximate version of Hungar-
ian algorithm [75]. Hungarian algorithm solves the linear
assignment problem at O(n3) time complexity:

max
X

tr(X>M)

s.t. X ∈ {0, 1}n×n,X1 = 1,X>1 = 1
(2)

where M ∈ Rn×n is the linear affinity matrix and X is
the discrete assignment matrix. A relaxed projection to the
doubly-stochastic matrix is achieved by Sinkhorn algorithm
with entropic regularization [76], [77], [78]:

max
S

tr(S>M)− τh(S)

s.t. S ∈ [0, 1]n×n,S1 = 1,S>1 = 1
(3)

where S is the doubly-stochastic matrix, h(S) =∑
i,j Sij logSij is the entropic regularizer and τ ∈ (0,+∞)

is the regularization factor. Given any real-valued matrix M,
Eq. 3 can be solved by firstly normalizing the regularization
factor τ : S = exp(M/τ). Then S is row- and column-wise
normalized alternatively:

Dr = diag(S1), S = D−1r S

Dc = diag(S>1), S = SD−1c

(4)

where diag(·) means building a diagonal matrix from the
input vector. Since Sinkhorn algorithm only involves matrix
multiply and element-wise inverse, it is differentiable with
automatic gradient techniques provided by deep learning
frameworks e.g. PyTorch.

The gap between Sinkhorn and Hungarian algorithm
is controlled by τ , viewed as an annealing parameter:
Sinkhorn algorithm performs closely to Hungarian if τ is
small (at the cost of slowed convergence), and the output of
Sinkhorn will become smoother given larger τ [77].

In our unsupervised paradigm, the output of Sinkhorn
algorithm (Wij) is treated as the node-wise matching result
to compute the unsupervised loss, and also the node-wise
similarity matrix which can be used by GM solvers.

3.1.3 Encoding Structural Information

As shown in Fig. 3, the GM solver accepts both CNN
features and structural information in images, and the
structural information is encoded as edges of graphs. We
follow [54] for the construction of edges. For the weighted
adjacency matrix of Gi, we firstly compute the Euclidean
distance between every pair of keypoints: lab = ‖pa − pb‖
where pa, pb are the coordinates of keypoints. Ai ∈ Rni×ni

represents the connectivity matrix of Gi and the correspond-
ing Ai[a, b] is computed as:

Ai[a, b] = exp

(
− l

2
ab

σl̂2

)
(5)

where l̂ is the median value of all lab. The diagonal part of
Ai is set as zeros. σ is the scaling factor.
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3.1.4 Discrepancy Minimization with GM Solver

Many unsupervised image classifiers share the design of
discrepancy-minimization of two different predictions from
the same image [30], [31]. To further extend such a paradigm
to graph matching, based on node-wise CNN features and
additional structural information (and multi-graph consis-
tency information if available), a GM solver offers a match-
ing prediction which is notably different from the node-wise
matching result predicted by Sinkhorn.

We develop such a paradigm because the matching
quality of Sinkhorn branch is purely based on CNN fea-
tures, which is probably the weakest matching method
available, and the matching prediction by the GM solver
should be more accurate than Sinkhorn because it utilizes
more information. The unsupervised learning objective is
to minimize the discrepancy of these two branches, i.e. the
Sinkhorn branch should be as accurate as the GM solver
after learning. Since the Sinkhorn branch is purely based on
CNN features, a more accurate Sinkhorn matching means
improved CNN features, which is also beneficial for the GM
solver that shares the same CNN. We empirically find such
an unsupervised learning paradigm effective by minimiz-
ing the discrepancy between a weaker first-order matching
method (Sinkhorn) and a stronger second-order matching
method (a GM solver). Finally, gradient is back-propagated
through the differentiable Sinkhorn branch, and the gradient
through the GM solver is naturally stopped because most
GM solvers are non-differentiable.

It is worth noting that we do not restrict the embodiment
of the GM solver, and in this paper, we mainly resort to
graduated assignment (GA) because this classical approach
can fit into all graph matching settings including GM, MGM,
and MGM3. We are refrained from adopting learning-based
GM solvers e.g. [36] because the solver’s learnable parame-
ters cannot be updated due to the necessity of stop-gradient
of the solver branch (see discussions below).

3.1.5 Remark on the Two-Branch Structure

The two-branch structure in our pipeline can be regarded
as a way of Siamese network (while the two branches are
not necessarily the same in structure let alone share the
same weights) as widely used in literature dating back to
[32]. In our case, the input sample refers to a pair of graphs
for matching while the output representation denotes the
matching matrix instead of an embedding feature as used
in many image classification literature. In particular, our
approach neither uses negative pairs [30] nor a momentum
encoder [31] to prevent collapse into a constant prediction.

As shown in Fig. 3, in our pipeline, only the Sinkhorn
branch allows gradient backpropagation while the solver
branch is non-differentiable. Technically speaking, one can
only estimate the gradient (with additional overhead) in
this branch e.g. by borrowing the gradient approximation
techniques in BBGM [35]. We find that our design can
achieve robust unsupervised learning without encounter-
ing the solution collapse. We think the reason is that the
learning can be more stable by fixing a branch, see Fig. 4
for a case study on the Willow ObjectClass dataset if we
differentiate through the solver branch by [35]. Interestingly
we also find that a loosely related work [39] after our con-

0.00001

0.0001

0.001

0.01

0.1

1

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

av
er

ag
ed

 a
b

so
lu

te
 v

al
u

e 
o

f 
g
ra

d
ie

n
t

training iteration

w/ stop-grad (test acc=0.978)

w/o stop-grad (test acc=0.491)

Fig. 4. The necessity of stop-gradient in our unsupervised learning of
graph matching, interestingly in line with the conclusions in [39].

ference version [33] also takes a similar gradient-stop strat-
egy for image classification with discrepancy-minimization-
based unsupervised learning, and their empirical studies
also show the effectiveness of this idea. Besides, the stop-
gradient seems necessary for either real gradients [39], or
approximate gradients [35].

3.2 Two-Graph Matching by Discrepancy Minimization

Two-graph matching (GM) is a classic graph matching
setting where the algorithm needs to solve the node-to-
node correspondence between two graphs Gi,Gj , and each
graph corresponds to an instance in image. The node-to-
node correspondence is denoted by the assignment matrix
Xij ∈ {0, 1}ni×nj , s.t.Xij1 ≤ 1,X>ij1 ≤ 1. “≤” is element-
wise comparison and we allow outliers in both Gi and Gj
(i.e. partial matching) as the most general case. 1 denotes a
column vector whose elements are all ones.

Our method works with the popular formulation of pair-
wise GM, namely Koopmans-Beckmann’s Quadratic As-
signment Problem [79] (abbreviated as KB-QAP) for Gi,Gj :

Definition 1. Two-Graph Koopmans-Beckmann’s QAP.
Solving the matching between Gi,Gj requires solving

max
Xij

λ tr(X>ijAiXijAj) + tr(X>ijWij)

s.t. Xij ∈ {0, 1}ni×nj ,Xij1 ≤ 1,X>ij1 ≤ 1
(6)

where λ is the weight for the edge-to-edge similarity
term, Ai,Aj are weighted adjacency matrices of Gi,Gj ,
and Wij represents the node-wise similarity between
Gi,Gj computed by Sinkhorn from CNN node features.

We minimize the discrepancy of the GM solver Xij and
node-wise matching Wij , measured by cross-entropy:

L = BCE(Xij ,Wij) (7)

where BCE denotes binary cross-entropy loss (also
known as permutation loss in [23], [34]), and Wij =
Sinkhorn(FiF

>
j , τw) is node-wise matching composed from

individual node features. The gradient is passed through the
differentiable Sinkhorn layer for unsupervised learning.
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3.3 Multi-Graph Matching by Discrepancy Minimization

For multi-graph matching, we consider all the graphs
G1,G2, . . . ,Gm belong to the same category. MGM aims
to mitigate wrong matchings obtained by GM solvers, by
leveraging the namely cycle-consistency property when
multiple graphs are jointly considered.

Definition 2. Cycle-consistency [9]. Under the scenario of
partial matching, the matching among G1,G2, . . . ,Gm is
cycle-consistent, if and only if

Xij ≥ XikXkj , ∀i, j, k ∈ [m] (8)

where ≥ is element-wise comparison and [m] denotes
the set of graph indices from 1 to m.

One way of enforcing the above cycle-consistency is to
decompose pairwise matching by matching to the universe.
Universe means the full-set of inlier nodes that co-exist in a
multi-matching problem [10]. For example, the MGM prob-
lems illustrated in Fig. 2 all have a universe size of 4. The
matching between Gi and the universe of size d is denoted
by Ui ∈ {0, 1}ni×d. Cycle-consistency defined in Eq. 8 is
satisfied if all pairwise matchings follow Xij = UiU

>
j .

Definition 3. Multi-Graph Koopmans-Beckmann’s QAP.
Multi-graph matching is formulated with KB-QAP, by
summing KB-QAP objectives among all pairs of graphs:

max
Xi,j ,i,j∈[m]

∑
i,j∈[m]

(
λ tr(X>ijAiXijAj) + tr(X>ijWij)

)
(9)

where all Xij are encoded by Xij = UiU
>
j and i, j ∈

[m] means iterating among all combinations of i, j. The
constraints in Eq. 9 are omitted for compact illustration.

For the MGM problem, the GM solver predicts a cycle-
consistent matching relation. We minimize the cross-entropy
between MGM and node-wise matching:

L =
∑

i,j∈[m]

BCE(Xij ,Wij) (10)

where Xij is the cycle-consistent MGM result from GM
solver and Wij = Sinkhorn(FiF

>
j , τw) is pairwise match-

ing composed from individual node features.

3.4 Multi-Graph Matching from Mixture of Modes by
Discrepancy Minimization

We further consider the more general MGM3 setting. From
now on we further use the term “class” which in this paper
is defined as the union of graphs with the same mode, e.g.
C1 = {G1,G2,G3}, and for MGM3 the set of all graphs
is a mixture of graphs from k classes C1, C2, . . . , Ck and
|C1 ∪C2 ∪ · · · Ck| = m, Ci ∩Cj = ∅ for all i, j ∈ [k]. For
MGM3 problem, the method needs to divide all graphs into
k classes, and for all intra-class graph pairs, the node-to-
node correspondence is computed for the matching task.

The objective of MGM3 problem is formulated by slight
modification from MGM KB-QAP in Eq. 9 as follows.

Definition 4. Koopmans-Beckmann’s QAP for Multi-Graph
Matching with a Mixture of Modes. The objective of

Algorithm 1: Graduated Assignment for Two-Graph
Matching (GA-GM)

Input: Visual graphs Gi,Gj ; node-wise similarity Wij ;
initial annealing τ0; descent factor γ; minimum
τmin; universe size d; outlier threshold φ.

1 Randomly initialize Xij ; projector← Sinkhorn; τ ← τ0;
2 if enable partial-robust then
3 Ai = Ai × d

ni
; # handle partial matching

4 while True do
5 while Xij not converged AND #iter ≤ #GMIter do
6 Vij ← λAiXijAj +Wij ; # update Vij

7 Xij ← projector(Vij , τ);
# project Vij to (relaxed) feasible space of Xij

8 if projector == Hungarian AND φ > 0 then
9 # handle outlier matching

10 Qij ← λ AiXijAj +Wij ;
11 Xij ← (Qij < φ)�Xij ;

12 # graduated assignment control
13 if projector == Sinkhorn AND τ ≥ τmin then
14 τ ← τ × γ;

15 else if projector == Sinkhorn AND τ < τmin then
16 projector← Hungarian;

17 else
18 break;

Output: Matching matrix Xij .

multi-graph matching with a mixture of modes is mod-
ulated by a clustering variable C, where Cij = 1 if Gi,Gj
are in the same class else Cij = 0.

max
Xij ,i,j∈[m]

∑
i,j∈[m]

Cij

(
λ tr(X>ijAiXijAj) + tr(X>ijWij)

)
(11)

with the clustering variable C, only the intra-class graph
pairs are counted when summing the objective.

We denote variables related to the mixture of modes by
blackboard bold letters. For MGM3, the GM solver jointly
predicts a cycle-consistent matching Xij and a clustering
matrix C. The loss involves a clustering indicator I(i, j):

L =
∑

i,j∈[m]

I(i, j) BCE(Xij ,Wij) (12)

where I(i, j) = Cij under the unsupervised learning
setting. There may exist misclassified graphs in the pre-
dicted C, so that during training, Eq. 12 will probably
involve meaningless matching between graphs from differ-
ent ground truth classes, yielding challenges for learning.
However, experiments show that our unsupervised scheme
overcomes this issue by improving matching and clustering
simultaneously, outperforming peer learning-free methods.

4 THE GRADUATED ASSIGNMENT APPROACH UN-
DER DISCREPANCY MINIMIZATION FRAMEWORK

The above unsupervised paradigm has well covered the
classic two-graph matching (GM) [5], [6], [7], [15], [16],
multi-graph matching (MGM) [8], [9], [10], [11], [80], and
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the emerging multi-graph matching with mixture of modes
(MGM3) [12]. Now we present detailed algorithmic imple-
mentations for these three cases under a unified graduated
assignment algorithmic framework, whereby partial match-
ing and outlier-aware matching are also addressed.

There are efforts to develop dedicated solvers for all
three graph matching variants including GM, MGM, and
MGM3. However, a unified approach for all three graph
matching problems is still missing. In this paper, we resort to
graduated assignment (GA) [16] which is a classic algorithm
solving hard combinatorial tasks e.g. graph matching. Pre-
vious works show the feasibility of graduated assignment
in GM [16], MGM [80], and also MGM3 in our preliminary
conference version [33]. In this section, classic graduated
assignment algorithms are fit to modern deep learning mod-
els, and a unified graduated assignment approach covering
all graph matching settings is presented.

In this paper, we name the learning-free version of our
graduated assignment approach as GA-GM, GA-MGM, and
GA-MGM3 for GM, MGM, and MGM3 settings respectively.
For those learned with unsupervised learning, they are
named graduated assignment neural networks (GANN).

4.1 Unsupervised Learning by Graduated Assignment
for Two-Graph Matching (GA-GM)

The application of graduated assignment to graph matching
can date back to 1996 when Gold and Rangarajan [16]
proposes to solve graph matching by iterative projection
with an annealing factor based on the Taylor expansion of
graph matching objective function. An illustration of GA-
GM algorithm is shown in Alg. 1. The classic graduated
assignment method to GM with modern deep learning
models is based on the KB-QAP formulation in Eq. 6.

Initialization. Each element in Xij is initialized by
1/d+ 10−3z, where z ∼ N(0, 1). A comparison of different
initialization techniques can be found in Sec. 5.5.2.

Graduated assignment (GA). The GA algorithm itera-
tively projects the KB-QAP objective in Eq. 6 to the feasible
space, by graduated Sinkhorn and Hungarian assignment.
For non-square matrices, minus infinite are padded to form
square matrices as the common technique. Recall the discus-
sion in Sec. 3.1.2 that Sinkhorn becomes closer to Hungarian
with shrinking τ . Sinkhorn can be adopted to gradually
project the input matrix to the feasible assignment matrix,
and annealing to the discrete matching result by Hungarian
method. In Alg. 1, the annealing speed is controlled by γ < 1
with τ ← τ × γ and there is a lower limit τmin.

4.2 Unsupervised Learning by Graduated Assignment
for Multi-Graph Matching (GA-MGM)

Graduated assignment algorithm on MGM is previously
discussed by Solé and Serratosa [80], where a “prototype”
graph is required as the anchor (in their paper they use
the first graph as the “prototype”). This means they as-
sume the bijection between each pair of graphs (i.e. full-
matching) which is hard to satisfy in practice. In contrast,
our proposed method is fully decentralized and free from
such a constraint, and it can therefore handle the setting of
partial matching, and outlier-aware matching. Besides, our

Algorithm 2: Graduated Assignment for Multi-Graph
Matching (GA-MGM)

Input: Visual graphs {G1,G2, ...Gm}; node-wise
similarity {Wij}; initial annealing τ0; descent
factor γ; minimum τmin; universe size d; outlier
threshold φ; clustering weight B (all Bij = 1 if
clustering is not considered).

1 Randomly initialize joint matching {Ui};
projector← Sinkhorn; τ ← τ0;

2 if enable partial-robust then
3 Ai = Ai × d

ni
; # handle partial matching

4 while True do
5 while {Ui} not converged AND #iter ≤ #GMIter do
6 ∀i ∈ [m], Vi ← 0;
7 for Gi,Gj in {G1,G2, ...Gm} do
8 Vi ← Vi+(λAiUiUj

>AjUj+WijUj)×Bij ;
# update Vi

9 for Gi in {G1,G2, ...Gm} do
10 Ui ← projector(Vi, τ);

# project Vi to (relaxed) feasible space of Ui

11 if projector == Hungarian AND φ > 0 then
12 # handle outlier matching
13 for Gi in {G1,G2, ...Gm} do
14 Qi ←

∑
j 6=i λ AiUiU

>
j AjUj +WijUj ;

15 Ui ← (Qi < φ)�Ui;

16 # graduated assignment control
17 if projector == Sinkhorn AND τ ≥ τmin then
18 τ ← τ × γ;

19 else if projector == Sinkhorn AND τ < τmin then
20 projector← Hungarian;

21 else
22 break;

Output: Joint matching matrices {Ui}.

method is capable of extending to matching with a mixture
of modes. These two settings are more practical.

Our graduated assignment multi-graph matching (GA-
MGM) can be viewed as the multi-graph generalization
from our GA-GM in Sec. 4.1, and the matching matrix Xij

is replaced by matching-to-universe Ui,Uj enforcing cycle-
consistency. The proposed method is summarized in Alg. 2.
The clustering weight matrix B has no effect on the MGM
problem and is filled with all ones.

Initialization. Each element in {Ui} is initialized by
1/d + 10−3z with z ∼ N(0, 1). In comparison, some MGM
peer methods require initialization from pairwise match-
ing [10], [81], [82] or multi-matching [54], leading to addi-
tional overhead when computing these matchings.

4.3 Unupervised Graduated Assignment for Multi-
Graph Matching with Mixture of Modes (GA-MGM3)

Our proposed graduated assignment multi-graph matching
with a mixture of modes (GA-MGM3) method is based on
the GA-MGM pipeline. It solves the mode-splitting (i.e.
clustering) problem and matching problem simultaneously
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Fig. 5. In the context of visual image matching, it shows a working example of the proposed unsupervised MGM3 learning pipeline with two classes
(each contains two graphs). As Alg. 3 iterates with decreasing annealing parameter β, the graph matching confidence increases (the darker the
higher) and so for the clustering confidence as indicated by the brightened node color from white to green/red. As the other parallel branch, CNN
and Sinkhorn net can form a node-wise matching network (connected by the blue arrows) whose samples are those within each class determined
by Alg. 3. The cross-entropy loss is computed to minimize the discrepancy between the above matching network and Alg. 3, only considering the
graphs from the same class. As such, the CNN weights can be trained via back-propagation along the flow in black dashed lines.

Algorithm 3: Graduated Assignment for Multi-Graph
Matching over Mixtures of Modes (GA-MGM3)

Input: Visual graphs {G1,G2, ...Gm}; node-wise
similarity {Wij}; clustering weights {β}.

1 All Bij ← 1; # initialize clustering weight matrix
2 for β in {β} do
3 while {Ui},C not converged AND #iter ≤ #ClsIter do
4 {Ui} ← GA-MGM({G1,G2, ...Gm}, {Wij},B);

# multi-graph matching
5 for Gi,Gj in {G1,G2, ...Gm} do
6 build Xij from U;
7 Aij ←

λc exp(−‖X>ijAiXij −Aj‖) + tr(X>ijWij)
# graph-to-graph similarity

8 C← spectral clustering with k-means++ on A;
9 B← C× (1− β) + β; # clustering weight

Output: Joint matching matrices {Ui}; clustering
matrix C.

with two annealing parameters tailored for matching and
clustering, respectively. We refer to classic clustering algo-
rithms [83] for the clustering step. Motivated by the idea that
more precise multi-graph matching will improve the cluster-
ing accuracy and vice versa, GA-MGM3 performs clustering
and multi-graph matching alternatively with gradually in-
creased clustering confidence until convergence. GA-MGM3

is summarized in Alg. 3.
Matching-based clustering. The key challenge of han-

dling graphs with a mixture of modes is finding a reason-
able measurement for graph-wise similarity, after which the
common spectral clustering technique can be applied. We
tackle this problem by proposing a matching-based graph-
wise similarity measure for clustering.

Given a batch of graphs from multiple modes, a multi-
graph matching relationship can be achieved by out-of-
box solvers e.g. our proposed GA-MGM. For graphs in
the same category, there should be a higher agreement

in their structural and node-wise alignment, compared to
graphs from different categories. Therefore, the matching
information among graphs can be adopted as the similarity
measure. For Gi,Gj , their similarity is computed from their
structural and node-wise agreement:

Aij = λc exp(−‖X>ijAiXij −Aj‖)︸ ︷︷ ︸
structural agreement

+ tr(X>ijWij)︸ ︷︷ ︸
node-wise agreement

(13)

where the first entry measures the similarity of aligned
adjacency matrices and the second entry encodes the agree-
ment on node-wise alignment. A weighting factor λc is also
considered here. Spectral clustering with k-means++ [83] is
further performed on A as the common technique. Based on
Eq. 13, for intra-class graphs Gi,Gj , a more accurate Xij will
result in larger Aij , therefore increased matching accuracy
will lead to more accurate clustering.

Clustering-aware matching. Following the MGM3 KB-
QAP formulation in Eq. 11, the clustering weight Bij is
multiplied to the projection step of GA-MGM (L8 in Alg. 2).
If we assign B = C, the projection step meets the objective
function in Eq. 11, assuming 100% clustering accuracy. In
realistic conditions with non-optimal clustering, we further
apply an annealing parameter β for the clustering weight

matrix B: Bij =

{
1 if Cij = 1
β if Cij = 0

which is equivalent to

B = C× (1−β)+β. The annealing parameter β ∈ [0, 1] can
be viewed as the confidence of clustering, and the MGM3

problem is solved by gradually declining β from 1 to 0.

4.4 Solving Partial and Outlier-aware Matching with
Affinity Reweighting under Overmatching Perspective

Partial matching and outlier matching are two important
scenarios yet less addressed by existing deep graph match-
ing methods, which are yet not explicitly considered in our
conference version [33]. We firstly discuss the overmatching
issue in Sec. 4.4.1, which is regarded as the major challenge
faced for partial and outlier matching, and then present our
reweighting techniques to suppress overmatching for partial
matching in Sec. 4.4.2 and outlier matching in Sec. 4.4.3.
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4.4.1 Unifying Partial Matching and with Outliers from the
Overmatching Perspective
The overmatching issue arises given the existence of par-
tial matching (i.e. occluded inliers) and outliers. Since GM
algorithms are in general designed to maximize the ob-
jective score, and incorrect matching still contributes to
the value of the objective score (though the contribution
is usually smaller than correct matching), GM algorithms
tend to match as many nodes as possible to maximize the
objective. We call such a phenomenon as “overmatching”
whereby the unexpected partial nodes and outlier nodes are
matched, leading to decreased matching accuracy. Though
MGM shows some ability of discovering the co-existence
of common inliers by enforcing cycle consistency, the over-
matching issue still exists because matching additional but
incorrect nodes can still increase the objective scores.

4.4.2 Affinity Reweighting for Robust Partial Matching
Partial matching means some inliers are occluded, and the
input graphs contain only a partial set of the universe. For
the MGM case, the co-existence of nodes can be discovered
by leveraging cycle consistency, but the overmatching issue
still exists, and the MGM solver may still tend to match as
many nodes as possible to maximize Eq. 9.

It is observed that the overmatching issue in partial
multi-graph matching occurs when equal weights are given
to all graphs with different sizes. For Ai of size ni × ni and
Aj of size nj × nj , the corresponding term in Eq. 9 is

Jij = tr(X>ijAiXijAj) (14)

where the summed number of elements is proportional to
ninj if Eq. 9 is maximized by matching as many pairs in Xij

as possible. These extra nodes may be incorrect matchings.
To mitigate this issue, we propose to balance the values of
Jij for different i, j by reweighting the edge weights. Since
we have Jij proportional to ninj , we normalize Ai by ni,
Aj by nj so that the values of Jij are balanced.

Specifically, for Gi with ni nodes and the universe size
of d, we normalize Ai as Ai = Ai × d

ni
. We multiply the

universe size so that the hyper-parameters do not need sig-
nificant modification. Such a reweighting technique is found
empirically effective in our experiments. It is equivalent to
reweighting the edge affinities in the matching objective
(Eq. 9). Note that such a reweighting technique is also
applicable for Wij , but we do not consider it because Wij

is already normalized by the Sinkhorn algorithm.

4.4.3 Proposal Reweighting for Robust Outlier Matching
Outliers are ubiquitous e.g. by the false alarm detection
of visual keypoint detectors which cannot find their cor-
respondence from any other views. It also leads to the over-
matching issue when two outliers are forced to be matched.
Outlier matching is different from partial matching (see
Fig. 2), and requires different reweighting techniques. Un-
fortunately, it has not been specifically studied in previous
GM learning works [5], [9], [33], [35], [36], [37].

We resort to image matching pipelines [1], whereby
matching proposals are filtered and reweighted by a pre-
defined confidence threshold. Since all elements in the
doubly-stochastic matrix output by the Sinkhorn algorithm

TABLE 1
The averaged inference time of learning-free GA-MGM and GA-MGM3

w/ or w/o the compact matrix form, on the Willow ObjectClass dataset
in our experiment (in line with Table 3 and the right half of Table 5).

compact matrix inference time (s)

GA-MGM X 1.1
× 345.6

GA-MGM3 X 107.2
× 252.0

can be viewed as the confidence of node matching, [1]
performs thresholding over the doubly-stochastic matrix
and reweights the below-threshold elements to zero. In
this paper, we propose a confidence measurement that
naturally arises in our graduated assignment algorithm: the
contributed objective score (i.e. affinity) of each matching
candidate. Starting from the two-graph objective (Eq. 6) as
an example, the contribution to the objective score is:

Qij = λ AiXijAj +Wij (15)

where Qij ∈ Rni×nj measures the confidence of all match-
ing candidates for Gi,Gj , and Xij is the matching matrix
proposed in the current iteration. The objective score is
tr(X>ijQij). At each iteration, we reweight matchings whose
corresponding score is lower than a given threshold φ:

Xij = (Qij < φ)�Xij (16)

where � means element-wise product.
For the more general multi-graph scenario (Eq. 9), we ex-

ploit a matching-to-universe representation: Xij = UiU
>
j .

We also derive the equivalent version for multi-graphs:

Qi =
∑
j 6=i

λ AiUiU
>
j AjUj +WijUj (17)

where Qi ∈ Rni×d, d is the universe size. The thresholding
and reweighting at each iteration becomes

Ui = (Qi < φ)�Ui (18)

In the implementation, reweighting is only considered if
the projector is the Hungarian algorithm. For the Sinkhorn
projection steps, the matching relations are still unclear and
the confidence scores are less reliable, thus we encourage
the algorithm to find as many matchings as possible (i.e.
we allow overmatching). With more matchings and higher
recalls after the Sinkhorn steps, the outliers can be discarded
without significantly poisoning the recall.

4.5 Implementation Details and Further Discussions

We discuss our GPU-friendly implementation of graduated
assignment algorithms in Sec. 4.5.1, and we provide the
theoretical analysis of graduated assignment in Sec. 4.5.2.
The initialization techniques of Sinkhorn and Hungarian
projectors are discussed in Sec. 4.5.3.

4.5.1 Compact Matrix Form Implementation
The multi-graph KB-QAP objective in Eq. 9 can be equiv-
alently written in a compact matrix form, whereby the
computational efficiency can be easily benefited from GPU
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TABLE 2
Hyper-parameter configurations over different datasets to reproduce our reported results in this paper.

parameter Willow ObjectClass CUB2011 Pascasl VOC Keypoint PhotoTourism descriptionGM & MGM MGM3 GM & MGM MGM3 GM & MGM MGM3 GM & MGM
lr 10−3 10−3 10−3 10−4 10−3 10−4 10−6 learning rate

lr-steps {200,1000} {100,500} {2000} {1000} {2500} {500} {5000} lr=lr×0.1 at these steps
λ 1 1 0.1 0.1 0.005 0.005 0.001 edge weight (Eq. 6&9)
λc - 1 - 0.1 - 0.1 - clustering weight (Eq. 13)
τw 0.05 0.05 0.05 0.05 0.05 0.05 - Sinkhorn’s τ for Wij

β - {1, 0.9, 0} - {1, 0.9} - {1, 0.9} - clustering annealing
τ0 0.1 {0.1, 0.1, 0.1} 0.05 {0.05, 0.05} 0.05 {0.05, 0.05} 5× 10−4 init τ (match annealing)

τmin 10−2 {10−2, 10−2, 10−3} 10−3 {10−2, 10−2} 0.005 {0.005, 0.005} 10−4 min τ (match annealing)
γ 0.8 0.8 0.8 0.8 0.8 0.8 0.9 τ ’s decay factor

#SKIter 10 10 100 100 50 50 100 Sinkhorn’s loop number
#GMIter 500 500 500 500 500 500 100 Alg. 1&2’s loop number
#ClsIter - 10 - 10 - 10 - Alg. 3’s loop number

σ 1 1 1 1 2 2 0.01 scaling factor (Eq. 5)
partial-robust × × × × X X X enable Ai = Ai × d

ni

outlier-robust(φ) -1 -1 -1 -1 -1 -1 1.1 outlier threshold

parallelization concerning multiple graphs. Inspired by [54],
the matching objective in Eq. 9 can be written as:

max
U

λ tr(UU>AUU>A) + tr(UU>W) (19)

where U is the joint matching matrix by stacking all Ui

at their first dimension. A is the joint adjacency matrix by
placing Ai at its diagonal, and W is the joint node-to-node
similarity matrix:

U =

 U0

...
Um

 , A =


A0 0 · · · 0
0 A1 · · · 0
...

...
. . .

...
0 0 · · · Am


W =

 W00 · · · W0m

...
. . .

...
Wm0 · · · Wmm


(20)

The update step of GA-MGM (L8 of Alg. 2) is replaced with

V← λAUU>AU+WU (21)

The clustering weight can also be fused with this compact
matrix form, by modifying Eq. 11 as

max
M,U

λ tr(UU>A(UU> ◦M)A)+ tr(UU>(W ◦M)) (22)

where Mni:n(i+1),nj :n(j+1)
= Cij introduces the clustering

information of MGM3 objective and ◦ denotes element-wise
multiplication. Therefore, considering additionally cluster-
ing, the update step in GA-MGM3 can be replaced with

V← λA(UU> ◦M)AU+ (W ◦M)U (23)

where Mni:n(i+1),nj :n(j+1)
= Bij encodes the clustering

weight. The handling of outlier matching in Eq. 17 also has
its compact matrix form:

Q← λ AUU>AU+WU (24)

Table 1 shows a significant acceleration with this com-
pact matrix form, because the benefits of our compact matrix
form can be automatically leveraged by the GPU support
of PyTorch. Please note that this compact matrix form is
tailored for multiple graphs and has no effect on GA-GM.

4.5.2 Theoretical Analysis on Graduated Assignment
In this section, we discuss the theoretical groundings of our
graduated assignment algorithms taking GA-MGM as an
example. GA-GM can be viewed as a special case of GA-
MGM where the number of graphs is set to 2, and the
derivation of GA-MGM3 can be achieved by simply mul-
tiplying the clustering term. The multi-graph KB-QAP ob-
jective in Eq. 9 is abbreviated as J . By setting Xij = U>i Uj ,
for a set of feasible multi-graph matching solutions {U0

i }, J
can be rewritten in its Taylor series:

J =
∑

i,j∈[m]

λtr(U0
jU

0>
i AiU

0
iU

0>
j Aj) + tr(U0

jU
0>
i Wij)

+
∑
i∈[m]

tr(V>i (Ui −U0
i )) + . . . (25)

where

Vi =
∂J

∂Ui

∣∣∣∣
Ui=U0

i

=
∑
j∈[m]

(
2λAiU

0
iU

0>
j AjU

0
j +WijU

0
j

)
(26)

where all terms are constants except Vi. Approximating
J with its first-order Taylor expansion, the maximization
of J is equivalent to maximizing

∑
i∈[m] tr(V

>
i Ui), which

is equivalent to solving m independent linear assignment
problems. Therefore, given initial Ui, our GA-MGM works
by considering the first-order Taylor expansion of the multi-
graph KB-QAP objective and computing Vi by Eq. 25. The
above linear assignment problems are solved via either
Sinkhorn algorithm (controlled by τ ) [77] or Hungarian
algorithm [75]. The linear assignment solver is controlled
by the annealing parameter τ , ensuring Ui gradually con-
verges to a high-quality discrete solution. Readers are re-
ferred to [84] for the convergence analysis of graduated
assignment. We omit the constant 2 in our implementation
because it can be absorbed by the parameter λ.

4.5.3 Initialization of Projectors
For the GM and MGM problem, our graduated algorithms
in Alg. 1 and 2 firstly work with coarse linear assignment
solvers, i.e. Sinkhorn method with large τ , then gradually
converge to a fine-grained solution with shrinking τ , finally
getting the discrete solution via Hungarian algorithm. Ini-
tializing the projector in Alg. 2 with the coarse Sinkhorn
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TABLE 3
Matching accuracy with both learning-free MGM methods and supervised learning peer methods on Willow ObjectClass dataset (mean and std by
50 trials). Compared results are quoted from the original papers without knowing the std results. Our learning-free GA-GM and GA-MGM surpass

previous learning-free methods, and our unsupervised learning GANN-MGM best performs among supervised learning methods.

method learning car duck face mbike wbottle mean
MatchLift [82] free 0.665 0.554 0.931 0.296 0.700 0.629

MatchALS [81] free 0.629 0.525 0.934 0.310 0.669 0.613
MSIM [11] free 0.750 0.732 0.937 0.653 0.814 0.777

MGM-Floyd [37] free 0.850 0.793 1.000 0.843 0.931 0.883
HiPPI [54] free 0.740 0.880 1.000 0.840 0.950 0.882

VGG16+Sinkhorn free 0.776±0.238 0.732±0.253 0.990±0.044 0.525±0.205 0.824±0.190 0.769
GA-GM (ours) free 0.814±0.300 0.885±0.197 1.000±0.000 0.809±0.243 0.954±0.113 0.892

GA-MGM (ours) free 0.746±0.153 0.900±0.106 0.997±0.021 0.892±0.139 0.937±0.072 0.894
HARG-SSVM [21] supervised 0.584 0.552 0.912 0.444 0.666 0.632

GMN [22] supervised 0.743 0.828 0.993 0.714 0.767 0.809
PCA-GM [23] supervised 0.840 0.935 1.000 0.767 0.969 0.902

DGMC [85] supervised 0.903 0.890 1.000 0.921 0.971 0.937
CIE-H [34] supervised 0.822 0.812 1.000 0.900 0.976 0.902
BBGM [35] supervised 0.968 0.899 1.000 0.998 0.994 0.972

NMGM [36] supervised 0.973 0.854 1.000 0.860 0.977 0.933
GANN (with HiPPI [54]) unsupervised 0.845±0.313 0.868±0.1573 0.992±0.010 0.911±0.172 0.954±0.090 0.914

GANN-GM (ours) unsupervised 0.854±0.261 0.898±0.226 1.000±0.000 0.886±0.186 0.964±0.104 0.920
GANN-MGM (ours) unsupervised 0.964±0.058 0.949±0.057 1.000±0.000 1.000±0.000 0.978±0.035 0.978

method is adopted under GM and MGM settings. For the
MGM3 problem, where GA-MGM3 (Alg. 3) repeatedly calls
GA-MGM (Alg. 2) in its loop, a more cost-efficient initial-
ization strategy is proposed. For each distinct value of β,
the projector is initialized by Sinkhorn with a large τ when
GA-MGM is called for the first time. For later iterations with
the same β, the projector is initialized with the Hungarian
algorithm, because only relatively small changes will occur
in the clustering result, and the corresponding matching
result should not change violently. A projection with the
Hungarian algorithm should be adequate. We empirically
find such an initialization technique improves both speed
and stability of our GA-MGM3 method.

5 EXPERIMENTS

In Sec. 5.1 we introduce our evaluation protocol. Results are
reported for two separate settings: GM with single mode
given two or more graphs (GM/MGM) in Sec. 5.2 and GM
with a mixture of modes (MGM3) in Sec. 5.3. We also test our
techniques on the natural image matching pipeline with ap-
plication to structure-from-motion (SfM) in Sec. 5.4. Further
experiments and ablation studies are given in Sec. 5.5.

5.1 Evaluation Protocol

Our implementation is built in line with deep GM peer
methods [23], [85], and we use the Matlab code released
by [12] for MGM3 peer methods. All images are re-
sized to 256 × 256 and normalized before being passed
to the VGG16 network. The raw RGB values are firstly
divided by 256 (normalized to [0, 1)), and normalized
by mean [0.485, 0.456, 0.406] and STD [0.229, 0.224, 0.225]
which are collected from ImageNet statistics. We imple-
ment Alg. 1, 2 and 3 that supports GPU parallelization.
Experiments are conducted on our Linux workstation with
Xeon-3175X@3.10GHz, RTX8000, and 128GB memory. The
parameter configurations are listed in Table 2.

5.1.1 Evaluation Metrics

For both matching with single mode (GM and MGM) and
matching with a mixture of modes (MGM3), we consider
the following matching accuracy metrics. Given one pre-
dicted assignment X and its ground truth Xgt, precision =
tr(X>Xgt)
sum(X) , recall = tr(X>Xgt)

sum(Xgt) and the corresponding f1-
score are considered. Mean and STD are reported from all
possible pairs of graphs. Note that precision = recall = f1 if
there exists no partial matching or outliers, and we denote
this metric as matching accuracy inline with [23], [34], [85].

For the MGM3 task, matching accuracy is evaluated
with intra-class graphs. The following clustering metrics are
also considered: 1) Clustering Purity (CP) [86] where Ci
represent the predicted class i and Cgtj is ground truth class
j: CP = 1

m

∑k
i=1 maxj∈{1,...,k} |Ci ∩ Cgtj |; 2) Rand Index

(RI) [87] computed by the number of graphs predicted in
the same class with the same label n11 and the number
of graphs predicted in separate classes and with differ-
ent labels n00, normalized by the total number of graph
pairs n: RI = n11+n00

n ; 3) Clustering Accuracy (CA) [12]
where A,B, ... are ground truth classes and A′,B′, ... are
predicted classes and k is the number of classes: CA = 1 −
1
k

(∑
A
∑
A′ 6=B′

|A′∩A||B′∩A|
|A||A| +

∑
A′
∑
A6=B

|A′∩A||A′∩B|
|A||B|

)
.

5.1.2 Graph Matching Datasets

We consider the following datasets: Willow ObjectClass,
CUB2011, Pascal VOC Keypoint. These datasets are eval-
uated under the setting of GM with single mode (GM and
MGM) and with a mixture of modes (MGM3).
• Willow ObjectClass dataset3 [21] has received wide atten-

tion which contains 304 images collected from Caltech-
256 [88] (208 faces, 50 ducks and 66 winebottles) and
Pascal VOC 2007 [89] (40 cars and 40 motorbikes). This
dataset is relatively small for deep learning models,
and it creates an ideal setting whereby each image

3. http://www.di.ens.fr/willow/research/graphlearning/
WILLOW-ObjectClass dataset.zip

http://www.di.ens.fr/willow/research/graphlearning/WILLOW-ObjectClass_dataset.zip
http://www.di.ens.fr/willow/research/graphlearning/WILLOW-ObjectClass_dataset.zip
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Fig. 6. Mean and STD of precision, recall, and f1-score of graph matching with a single mode on CUB2011 dataset. MGM statics are computed
from all graph pairs in each category, and two-graph matching statics are computed from 1000 random graph pairs. Improvement can be seen from
our learning-free methods to our unsupervised methods, which are comparative with novel supervised learning methods on the testing set.

contains one object and is labeled with 10 common
semantic keypoints without outliers. It is worth noting
that there are originally 209 face images in Willow
ObjectClass, but the face image No. 0160 is labeled with
only 8 keypoints (which is probably a mistake), and we
exclude this image during evaluation.

• CUB2011 dataset4 [29] is a large-scale image matching
dataset including 11,788 bird images from 200 cate-
gories with about 50%/50% split of training/testing
images for each category. The keypoints may be self-
occluded which results in the partial matching chal-
lenge (about 12 out of 15 keypoints for each image), and
the poses of birds vary from flying, standing, and swim-
ming, and the images may contain different illumina-
tion and background situations. All these factors yield
more challenges, compared to Willow ObjectClass.

• Pascal VOC Keypoint dataset contains natural images
from 20 classes in VOC 20115 [89] with additional key-
point labels6 provided by [28]. To adapt the raw dataset
to graph matching, specific filtering rules (see [22]) are
developed to retain 7,020 training images and 1,682 test-
ing images to obtain a new benchmark, and the size of
the graph for each image ranges from 6 to 23. This pro-
tocol has been widely followed by subsequent learning-
based solvers [23], [34], [35]. So far only two-graph
matching learning is considered. The large variations
in appearance, scale, illumination, and pose make the
Pascal VOC Keypoint so challenging that state-of-the-
art supervised algorithms still struggle on this dataset.
However, the mainstream of existing evaluations [23],
[34] on this dataset limits the problem setting to GM
and pre-filter nodes to bypass the challenge of partial
matching except for a recent attempt [35].

5.2 Evaluation on Graph Matching with Single Mode
Graph matching with single mode is the classic setting,
where all graphs belong to the same category. We evaluate
our unsupervised learning GANN-GM and GANN-MGM

4. http://www.vision.caltech.edu.s3-us-west-2.amazonaws.com/
visipedia-data/CUB-200-2011/CUB 200 2011.tgz

5. http://host.robots.ox.ac.uk/pascal/VOC/voc2011/index.html
6. https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/

shape/poselets/voc2011 keypoints Feb2012.tgz

against learning-free MGM solvers [11], [37], [54], [81], [82]
and supervised learning-based GM [21], [22], [23], [34], [35],
[85] and MGM [36] methods.

5.2.1 Results on Willow ObjectClass

Our evaluation protocol follows [36], [37], where both
learning-free and learning-based methods are compared,
as shown in Table 3. Our MGM models are trained in
an unsupervised manner with 8 graphs randomly drawn
per category, and tested by jointly matching the entire
category since this dataset is relatively small. Most com-
pared learning graph matching methods are two-graph
matching since there is little effort in learning MGM except
NMGM [36]. Among learning-free methods, our GA-MGM
performs comparatively with state-of-the-art MGM solvers.
Most importantly, under the learning setting, our unsuper-
vised learning GANN-MGM surpasses all supervised two-
graph matching learning peer methods and best performs
in terms of mean accuracy. Since we do not restrict the
embodiment of the MGM solver in Fig. 3, we also imple-
ment and compare another unsupervised learning method
by replacing GA-MGM with HiPPI [54], whose matching
accuracy also surpasses several learning baselines.

5.2.2 Results on CUB2011

CUB2011 is more challenging compared to Willow Ob-
jectClass because the graphs are larger and we need to
deal with partial matching. Since the learning-free GA-
MGM is comparative with the recent learning-free peer
MGM methods [11], [37], [54] on Willow ObjectClass, we
mainly compare with the available supervised deep learning
methods (only for two graphs, since multi-graph learning
NMGM [36] does not support partial matching). For our
MGM method, during training, we randomly draw 8 graphs
per category for cost-efficiency, and during evaluation, all
graphs from the same category are matched jointly. We
follow the train/test original split of the dataset, and our
unsupervised models are learned on the training set. As
shown in Fig. 6, for the MGM task, our GANN-MGM per-
forms comparatively on the testing set against state-of-the-
art PCA-GM [23] and CIE [34] which are trained by ground
truth supervision. Also, our unsupervised learning scheme
generalizes soundly from training samples to unseen testing

http://www.vision.caltech.edu.s3-us-west-2.amazonaws.com/visipedia-data/CUB-200-2011/CUB_200_2011.tgz
http://www.vision.caltech.edu.s3-us-west-2.amazonaws.com/visipedia-data/CUB-200-2011/CUB_200_2011.tgz
http://host.robots.ox.ac.uk/pascal/VOC/voc2011/index.html
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/poselets/voc2011_keypoints_Feb2012.tgz
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/poselets/voc2011_keypoints_Feb2012.tgz
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TABLE 4
F1 scores (%) on Pascal VOC Keypoint dataset (without filtering). The bold statistics denote the best-performing method. The Pascal VOC

Keypoint dataset seems to be challenging for unsupervised models without ground truth labels, and we develop a new graph matching learning
paradigm for state-of-the-art models NGMv2 and BBGM in combination of unsupervised pretraining (by GANN-MGM) and supervised learning.

model learning backbone #params aero bike bird boat bottle bus car cat chair cow table dog horse mbkie person plant sheep sofa train tv mean
GMN [22] sup. VGG16 12.9M 28.0 55.0 33.1 27.0 79.1 52.2 26.0 40.2 28.4 36.0 29.8 33.7 39.4 43.0 22.1 71.8 30.8 25.9 58.8 78.0 41.9

PCA-GM [23] sup. VGG16 41.7M 27.5 56.5 36.6 27.7 77.8 49.2 23.9 42.3 27.4 38.2 38.7 36.5 39.3 42.8 25.6 74.3 32.6 24.7 51.5 74.3 42.4
GANN-GM (ours) unsup. VGG16 12.4M 12.6 19.5 16.6 18.5 41.1 32.4 19.3 12.3 24.3 17.2 38.0 12.2 15.9 18.2 19.4 35.5 14.8 15.4 41.5 60.8 24.3

GANN-MGM (ours) unsup. VGG16 12.4M 18.1 33.4 20.2 28.2 71.7 33.9 22.0 24.7 23.5 22.4 50.2 19.6 20.9 27.7 19.5 74.5 19.3 26.5 39.8 72.7 33.4
ResNet34 21.3M 16.4 37.4 23.2 29.5 80.8 33.6 24.1 17.8 26.9 22.6 53.4 16.9 21.8 30.1 23.3 86.0 19.7 31.7 39.0 71.5 35.3

NGMv2 [36] sup. VGG16 71.4M 45.9 66.6 57.2 47.3 87.4 64.8 50.5 59.9 39.7 60.9 42.1 58.3 58.5 61.9 44.6 94.5 50.1 35.2 73.1 82.1 59.0
ResNet34 77.9M 45.1 65.5 52.7 44.0 87.3 69.4 56.1 62.2 45.7 63.6 61.9 59.6 59.2 67.8 54.4 96.9 57.0 45.9 74.3 83.6 62.6

BBGM [35] sup. VGG16 71.4M 41.3 65.7 55.0 43.4 86.8 61.1 35.5 59.0 40.2 60.0 29.7 57.1 57.5 65.9 37.7 95.8 52.6 30.3 74.4 84.1 56.7
ResNet34 77.9M 38.1 69.1 54.2 45.0 87.0 74.7 43.3 62.3 48.3 63.7 63.8 60.9 60.4 65.4 50.2 97.1 56.2 45.9 78.4 82.2 62.3

GANN-MGM (ours) unsup. VGG16 71.4M 47.0 69.4 53.7 46.3 85.7 67.6 59.0 60.2 45.9 61.0 29.9 57.9 59.5 63.2 47.4 92.2 51.5 39.9 71.6 78.3 59.4 (+0.4)
+NGMv2 [36] +sup. ResNet34 77.9M 46.5 66.2 56.5 46.5 85.9 73.8 57.4 61.4 47.3 65.7 63.9 59.4 60.1 70.6 54.7 94.3 57.0 51.8 74.9 82.4 63.8 (+1.2)

GANN-MGM (ours) unsup. VGG16 71.4M 43.0 69.2 55.3 46.3 85.4 66.7 53.3 61.4 46.7 64.0 33.7 61.7 60.7 64.0 43.9 94.0 54.9 52.3 78.0 80.0 60.7 (+4.0)
+BBGM [35] +sup. ResNet34 77.9M 39.6 68.9 56.2 46.7 87.4 71.9 44.5 62.0 47.9 65.8 50.8 62.6 61.6 62.9 49.4 96.9 59.6 49.7 80.6 85.3 62.5 (+0.2)
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Fig. 7. Experiment result on Pascal VOC Keypoint dataset for initializing
VGG16 weights of NGMv2 [36] and BBGM [35] by the proposed un-
supervised learning model GANN-MGM. Without modifying any model
architectures, the unsupervised pretraining by GANN-MGM leads to
faster convergence and better performance compared to the versions
initialized by ImageNet classification weights.

samples, while the supervised learning methods suffer from
overfitting on training data. Besides, the reason why our
unsupervised GANN-MGM performs better on testing data
than training data is probably that the testing set is slightly
easier than the training set, as our learning-free version GA-
MGM also performs better on testing data.

5.2.3 Results on Pascal VOC Keypoint
In line with our previous experiments, we adopt the original
dataset labels without filtering the keypoints i.e. partial
matching setting, which is also known as the “without
filtering” setting in [35]. We jointly consider 5 graphs for
multi-matching. We reimplement learning-based peer meth-
ods [22], [23], [35], [36] to this challenging setting, and
results are reported in Table 4. We discover that train-
ing labels are important for the challenging Pascal VOC
Keypoint dataset, and our unsupervised learning meth-
ods are inferior to supervised learning models [22], [23].
Existing deep graph matching models are all based on
the VGG16 [25] CNN for the purpose of fair comparison.
In this paper, we also consider the ResNet34 [90] CNN
backbone. Improved matching accuracy is achieved with
the higher model capacity offered by ResNet. We further
develop a new graph matching learning paradigm by firstly
pretraining the CNN weights (by our devised unsupervised
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Fig. 8. Mean and STD results of our learning-free GA-MGM3 and un-
supervised learning GANN-MGM3 on the MGM3 problem. Since the
performance of our learning-free GA-MGM3 is comparative to other
learning-free baselines [9], [12] on Willow ObjectClass, we compare
unsupervised learning-based GANN-MGM3 with GA-MGM3. For the
CUB2011 dataset, both matching and clustering performances can
be elevated by unsupervised learning. For the Pascal VOC Keypoint
dataset, the clustering performance is nearly saturated, but the matching
accuracy can be improved by unsupervised learning.

learning approach), and then learning by supervised labels.
In experiments, we consider state-of-the-art graph matching
models [35], [36]. For GANN-MGM+NGMv2 and GANN-
MGM+BBGM, the VGG16/ResNet34 backbones are initial-
ized by our unsupervised learning model, and the other
layers (SplineConv [91] layers and NGM’s solver layers)
are randomly initialized. In contrast, the original training
pipeline adopts VGG16/ResNet34 weights pretrained on
ImageNet [73] classification task, which seem to suffer from
certain domain gaps to the graph matching task. In Fig. 7,
we plot the test accuracy for the training process (VGG16
backbone), and the models initialized by GANN-MGM con-
verge faster and better compared to the baselines.

5.3 Evaluation under the Setting of Mixture of Modes
We then test the case with graphs belonging to a mixture of
underlying modes, and the solver needs to handle matching
and clustering simultaneously. Since there is no learning-
based solution to MGM3 so far to our best knowledge,
the learning-free method DPMC [12] is compared whose
evaluation protocol is also adopted here.

5.3.1 Results on Willow ObjectClass
In line with [12], matching and clustering are simultane-
ously solved for graphs from 3 Willow categories (car, duck,
motorbike). Apart from the dedicated MGM3 solver [12],
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TABLE 5
Multiple graph matching with mixture of modes (MGM3) evaluation (with inference time in second) on Willow ObjectClass dataset. Our

learning-free version GA-MGM3 is slightly inferior to DPMC [12], but both matching and clustering accuracies can be elevated by unsupervised
learning, and our unsupervised GANN-MGM3 surpasses all peer methods.

method learning 8 Cars, 8 Ducks, 8 Motorbikes 40 Cars, 50 Ducks, 40 Motorbikes
CP RI CA MA time (s) CP RI CA MA time (s)

RRWM [5] free 0.879 0.871 0.815 0.748 0.4 0.962 0.949 0.926 0.751 8.8
CAO-C [9] free 0.908 0.903 0.860 0.878 3.3 0.971 0.960 0.956 0.906 1051.5

CAO-PC [9] free 0.887 0.883 0.831 0.870 1.8 0.971 0.960 0.956 0.886 184.0
DPMC [12] free 0.931 0.923 0.890 0.872 1.2 0.969 0.959 0.948 0.941 97.5

GA-MGM3 (ours) free 0.921 0.905 0.893 0.653 10.6 0.890 0.871 0.850 0.669 107.8
GANN-MGM3 (ours) unsup. 0.976 0.970 0.963 0.896 5.2 0.974 0.968 0.956 0.906 80.7

TABLE 6
Stereo reconstruction (SfM) accuracy and matching accuracy (%) on the validation set of PhotoTourism dataset. “AUC@X” means Area Under

Curve if the pose error is smaller than X degrees. “Prec” means matching precision i.e. #correct match
#predicted match , and “MScore” means #correct match

#keypoints .

label-free finetune AUC@5 AUC@10 AUC@20 Prec MScore
SuperGlue [1] no 16.57 32.40 48.86 65.61 24.50

SuperGlue [1]+GA-GM (ours) no 16.60 32.74 49.79 65.71 25.52
SuperGlue [1]+GA-MGM (ours) no 17.13 32.76 49.79 64.90 26.19

SuperGlue+GA-MGM (no partial/outliers handling) no 7.75 20.01 39.96 21.11 18.58
SuperGlue [1]+GA-GM (ours) yes 26.18 46.99 66.34 68.69 32.36

SuperGlue [1]+GA-MGM (ours) yes 26.70 47.19 66.70 71.13 27.51

two popular solvers for two-graph matching [5] and multi-
graph matching [9] are also compared, where matching
is firstly solved among all graphs, followed by spectral
clustering. Table 5 reports the clustering metrics including
CP, RI, CA, and intra-ground-truth class matching accuracy
(MA). Both smaller-scaled (24 graphs) and larger-scaled (130
graphs) MGM3 problems are tested, and GANN-MGM3

outperforms on the smaller-scaled problem and scales up
soundly. For unsupervised learning on the MGM3 task,
clustering accuracy might be more important than matching
accuracy. Our learning-free GA-MGM3 achieves accurate
clustering but is not as comparative in matching, however,
both matching and clustering performances are improved
with supervision from GA-MGM3. Besides, our GANN-
MGM3 is relatively slow on the smaller-scaled problem,
but runs comparatively fast with DPMC [12] on the larger-
scaled problem, probably because the overhead on VGG16
is more significant on smaller problems. We also find un-
supervised learning improves the convergence speed of our
graduated assignment method.

5.3.2 Results on CUB2011
For the MGM3 task, evaluation is conducted on 10 Horned
Grebe, 10 Baird Sparrow, and 10 Caspian Tern for 50 trails.
This MGM3 problem on CUB2011 is more challenging than
the Willow ObjectClass because all involved images belong
to different subcategories of birds and are more difficult to
categorize. For the MGM3 problem, clustering metrics and
matching precision (MP), recall (MR), and f1-score (MF) are
reported on the testing set, as shown in Fig. 8(a), where
unsupervised learning helps to improve all matching and
clustering metrics compared to the learning-free version.

5.3.3 Results on Pascal VOC Keypoint
We formulate the MGM3 problem by a mix of three modes:
5 bicycles, 5 bottles, and 5 tvmonitors randomly sampled
from the dataset. Mean and STD are reported with 200 trials
in Fig. 8(b). The improvement of clustering metrics brought
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Fig. 9. Our unsupervised learning image matching pipeline. The brown
modules support gradient back-propagation and are learned by minimiz-
ing the discrepancy between SuperGlue [1] and our GA-MGM.

by unsupervised learning is not as significant as the im-
provement of matching accuracies on Pascal VOC Keypoint,
probably because images within the same category of Pascal
VOC still vary greatly in pose and appearance, yielding
challenges to the clustering step.

5.4 Extending Unsupervised Graph Matching to Image
Matching and SfM Applications

5.4.1 Unsupervised Natural Image Matching Pipeline
We try to apply our technique to this realistic and popular
setting. It involves the following steps: keypoint detection,
feature extraction, keypoint matching, and consensus fil-
tering. The filtered matching result is further utilized to
estimate the stereo pose or measure the similarity between
images. Existing deep graph matching papers focus on the
keypoint matching step, assuming that the other upstream
and downstream tools are ready. However, it leads to certain
ideal assumptions such as not considering partial matching
and outliers [9], [23], [36], [37]. With our proposed treat-
ments for partial and outlier matching, we manage to bridge
the gap between deep graph matching and natural image
matching. Specifically, we follow the novel SuperPoint [69]
and SuperGlue [1] pipeline whereby SuperPoint is a pre-
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Fig. 10. Ablation study results of the proposed MGM3 method on WillowObject Class dataset (in line with the right half of Table 5).

TABLE 7
Matching accuracy on Willow dataset (50 tests), where the backbone net of PIA+GA-MGM is built by extending the VGG16 with PIA-GM [23].

method learning car duck face mbike wbottle
GA-MGM (ours) free 0.746±0.153 0.900±0.106 0.997±0.021 0.892±0.139 0.937±0.072

PIA+GA-MGM [23]+(ours) free 0.380±0.103 0.434±0.153 0.484±0.102 0.450±0.161 0.421±0.064
GANN-MGM (ours) unsup. 0.964±0.058 0.949±0.057 1.000±0.000 1.000±0.000 0.978±0.035

PIA+GANN-MGM [23]+(ours) unsup. 0.394±0.009 0.493±0.026 0.501±0.009 0.426±0.023 0.478±0.006

TABLE 8
MGM3 on Willow w/ 40 Cars, 50 Ducks, 40 Motorbikes with PIA + GA-MGM3 (mean and STD by 50 tests).

method learning CP RI CA MA time (s)
GA-MGM3 (ours) free 0.890±0.060 0.871±0.061 0.850±0.061 0.669±0.122 11.7

PIA+GA-MGM3 [23]+(ours) free 0.607±0.102 0.645±0.068 0.514±0.102 0.261±0.060 17.9
GANN-MGM3 (ours) unsup. 0.974±0.034 0.968±0.035 0.956±0.039 0.906±0.047 9.2

PIA+GANN-MGM3 [23]+(ours) unsup. 0.567±0.061 0.633±0.029 0.451±0.044 0.255±0.023 19.2

trained CNN keypoint detector and SuperGlue is the match-
ing module composed of graph attention networks [92]
and Sinkhorn [71]. Our GA-GM and GA-MGM algorithms
are built on top of SuperGlue’s output, to leverage the
domain knowledge of tackling image matching problems.
Since the final layer of SuperGlue is a Sinkhorn layer, we can
treat the SuperGlue network as the CNN backbone in our
previous graph matching pipeline and apply the framework
for image matching, as shown in Fig. 9. During inference, we
adopt the RANSAC algorithm [63] for consensus filtering.

5.4.2 The Photo Tourism Dataset and Results

The Photo Tourism dataset is part of the annual image
matching challenge [93] composed of 25061 images, col-
lected from photos at 16 tourism attractions around the
world7 from Yahoo Flickr8. It focuses on the stereo pose esti-
mation task for structure-from-motion (SfM). The (pseudo)
ground truth camera poses are established with the off-the-
shelf SfM software colmap [94], [95] by jointly matching all
images from the same scene. Participant models are tested
on a harder problem of matching images and estimating the
relative poses given only a small subset of data. Besides, this
dataset suffers from partial matching due to occlusion and
view-point changes, and there exist unavoidable outliers
found by the keypoint detector. Therefore, this dataset is
a wonderful testbed for validating the robustness of our
approach and the performance of real-world downstream
tasks. We adopt the pretrained “outdoor” weights released

7. https://www.cs.ubc.ca/∼kmyi/imw2020/data.html
8. https://www.flickr.com/

by the SuperGlue [1] authors and tune the SuperGlue net-
work on the training set by unsupervised learning.

Table 6 shows the evaluation metrics and results. Our
learning-free GM and MGM algorithms improve the match-
ing precision and MScore, such that the SuperGlue model is
guided to more accurate matching during the discrepancy-
minimization procedure. Increased precision and MScore
also lead to higher accuracy on the downstream SfM task,
suggesting the potential of further applying our method to
other natural image matching tasks.

5.5 Additional Results and Further Discussion
5.5.1 Root Analysis of Graduated Assignment on MGM3

The motivation of our GA-MGM3 method is that more
precise multi-graph matching will improve the clustering
accuracy and vice versa. In Fig. 10(a), we plot the match-
ing and clustering metrics for the learning-free GA-MGM3

model on Willow ObjectClass (in line with right half of
Table 5). In Fig. 10(a), β drops from 1 to 0.9 at iteration
3, and drops from 0.9 to 0 at iteration 6. We observe that
more accurate clustering improves matching accuracy and
vice versa, finally reaching a satisfying matching and clus-
tering result. Our motivation of developing GA-MGM3 is
validated in this root analysis.

5.5.2 Ablation Study for Algorithmic Configurations and
Hyper-parameters
Ablation studies are conducted on the MGM3 problem on
Willow dataset in line with the right half of Table 5. For the
initialization of {Ui}, we experiment with other initializa-
tion methods, e.g. initialize by spectral multi-matching [10].

https://www.cs.ubc.ca/~kmyi/imw2020/data.html
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As shown in Fig. 10(b), different denominator configura-
tions are compared with the spectral multi-matching tech-
nique [10], and our method seems to be insensitive to
different initialization methods. Thus we adopt random
initialization for its cost-efficiency in practice.

We also test different configurations of γ from 0.5 to 0.95
at the interval of 0.05. As shown in Fig. 10(c), the inference
time drops as γ grows, and the matching accuracy (MA)
peaks at γ = 0.8. For γ < 0.6, the graduated assignment
method becomes hard to converge, resulting in relatively
lower accuracy and slower inference. The clustering metrics
do not change significantly with γ. Our selected γ = 0.8
achieves the best average MA and moderately good cluster-
ing results with satisfying inference time.

5.5.3 Feature Extraction with GNN
Many recent efforts in deep GM involve learning with
graph neural networks (GNNs) [23], [34], [35]. Here we
experiment our method with graph convolutional network
(GCN), which can be viewed as extending the VGG16 CNN
with PIA-GM [23] (contains a VGG16 and 3-layer GCN). The
more powerful PCA-GM in [23] is not considered because it
is nontrivial to define the cross-graph convolution operation
when jointly matching multiple graphs. In this experiment,
the VGG16 net of PIA-GM is initialized with ImageNet
classification weights and the GCN layers are randomly
initialized following [23]. As shown in Table 7 and Table 8
where MGM and MGM3 problems on Willow dataset are
considered, respectively. When involving GCN, both match-
ing and clustering accuracies are inferior compared to the
GCN-free counterparts. Results in Table 7 and Table 8 show
that initialization is important for unsupervised learning,
and random initialization may be inadequate for the GCN
layers. Other initialization techniques may be adopted for
the GCN layers, but they are beyond the scope of this paper.

5.5.4 Visualization of Matching with a Mixture of Modes
A visualization of the prediction of GANN-MGM3 is shown
in Fig. 11, where images are embedded to 2D space based
on their graph-wise similarity scores obtained by Eq. 13.
Multidimensional scaling is adopted as the embedding
technique. As shown in Fig. 11, most Honored Grebes are
swimming, most Baird Sparrows are standing and most
Caspian Terns are flying, and these three poses distribute in
three directions of the embedded space. Fig. 11 suggests that
the pose of birds may be a key ingredient for our algorithm
to distinguish different birds, and even the misclassified
image is confusing considering its pose. Pose information
is mainly encoded by edges, and in this paper, we mainly
focus on utilizing graph information (i.e. node information
and edge information) that is available for the most general
MGM3 task to distinguish different categories.

6 CONCLUSIONS

We have presented a unified unsupervised graph matching
learning method for two-graph and multi-graph matching,
as well as the realistic setting with a mixture of modes,
where an off-the-shelf graph matching solver and a differen-
tiable Sinkhorn net offer two different matching predictions,
resulting in a discrepancy minimization pipeline. Besides,

Horned_Grebe

Horned_Grebe

Horned_GrebeHorned_Grebe

Horned_Grebe

Horned_Grebe

Horned_Grebe

Horned_Grebe Horned_Grebe

Horned_Grebe

Baird_Sparrow

Baird_Sparrow

Baird_Sparrow

Baird_Sparrow

Baird_Sparrow

Baird_Sparrow

Baird_Sparrow

Baird_Sparrow
Baird_Sparrow

Baird_Sparrow

Caspian_Tern

Caspian_TernCaspian_Tern

Caspian_Tern

Caspian_Tern

Caspian_Tern

Caspian_Tern

Caspian_Tern

Caspian_Tern

Caspian_Tern

Fig. 11. Visualization of clustering by our method on CUB2011, by
embedding the graph-wise distances to 2D via multidimensional scaling.
The label under the images denotes their ground truth, and the color of
the outer box (red/blue/yellow) shows the predicted modes. We mark the
only misclassified “Caspian Tern” with red label background.

a unified embodiment of graduated assignment algorithm
is proposed to serve as the traditional solver. Promising
results are obtained showing the feasibility and advantage
of introducing deep networks, especially unsupervised deep
networks, to such challenging combinatorial problems.
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